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OSE data science

This course introduces students to basic microeconometric methods. The objective is to learn how to make and evaluate
causal claims. By the end of the course, students should be able to apply each of the methods discussed and critically
evaluate research based on them. Throughout the course we will make heavy use of Python and its SciPy ecosystem as
well as Jupyter Notebooks.
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CHAPTER

ONE

LECTURES

We provide a set of lectures that are all provided as Jupyter Notebooks.

1.1 Introduction

We briefly introduce the course and discuss some basic ideas about counterfactuals and causal inference. We touch
on the two pillars of the counterfactual approach to casusal analysis. We first explore the basic ideas of the potential
outcome model and then preview the use of causal graphs.

1.1.1 Introduction

This course introduces students to basic microeconmetric methods. The objective is to learn how to make
and evaluate causal claims. By the end of the course, students should to able to apply each of the methods
discussed and critically evaluate research based on them.

I just want to discuss some basic features of the course. We discuss the core references, the tooling for the course,
student projects, and illustrate the basics of the potential outcomes model and causal graphs.

Causal questions

What is the causal effect of . . .

• neighborhood of residence on educational performance, deviance, and youth development

• school vouchers on learning?

• of charter schools on learning?

• worker training on earnings?

• . . .

What causal question brought you here?
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Core reference Test

The whole course is built on the following textbook:

• Winship, C., & Morgan, S. L. (2007). Counterfactuals and causal inference: Methods and principles for social
research. Cambridge, England: Cambridge University Press.

This is a rather non-standard textbook in economics. However, I very much enjoy working with it as it provides a
coherent conceptual framework for a host of different methods for causal analysis. It then clearly delineates the special
cases that allow the application of particular methods. We will follow their lead and structure our thinking around
the counterfactual approach to causal analysis and its two key ingredients potential outcome model and directed
graphs.
It also is one of the few textbooks that includes extensive simulation studies to convey the economic assumptions
required to apply certain estimation strategies.

It is not very technical at all, so will also need to draw on more conventional resources to fill this gap.

• Wooldridge, J. M. (2001). *Econometric analysis of cross section and panel data*. Cambridge, MA: The MIT
Press.

• Angrist, J. D., & Pischke, J. (2009). *Mostly harmless econometrics: An empiricists companion*. Princeton,
NJ: Princeton University Press.

• Frölich, M., and Sperlich, S. (2019). *Impact evaluation: Treatment effects and causal analysis*. Cambridge,
England: Cambridge University Press.

Focusing on the conceptual framework as much as we do in the class has its cost. We might not get to discuss all the
approaches you might be particularly interested in. However, my goal is that all of you can draw on this framework later
on to think about your econometric problem in a structured way. This then enables you to choose the right approach
for the analysis and study it in more detail on your own.

Combining this counterfactual approach to causal analysis with sufficient domain-expertise will allow you to leave the
valley of despair.

4 Chapter 1. Lectures
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Lectures

We follow the general structure of Winship & Morgan (2007).

• Counterfactuals, potential outcomes and causal graphs

• Estimating causal effects by conditioning on observables

– regression, matching, . . .

• Estimating causal effects by other means

– instrumental variables, mechanism-based estimation, regression discontinuity design, . . .

Tooling

We will use open-source software and some of the tools building on it extensively throughout the course.

• Course website

• GitHub

• Zulip

• Python

• SciPy and statsmodels

• Jupyterlan

• GitHub Actions

We will briefly discuss each of these components over the next week. By then end of the term, you hopefully have a
good sense on how we combine all of them to produce sound empirical research. Transparency and reproducibility are
a the absolute minimum of sound data science and all then can be very achieved using the kind of tools of our class.

Compared to other classes on the topic, we will do quite some programming in class. I think I have a good reason to do
so. From my own experience in learning and teaching the material, there is nothing better to understand the potential
and limitations of the approaches we discuss than to implemented them in a simulation setup where we have full control
of the underlying data generating process.

To cite Richard Feynman: What I cannot create, I cannot understand.

However, it is often problematic that students have a very, very heterogeneous background regarding their prior pro-
gramming experience and some feel intimidated by the need to not only learn the material we discuss in class but also
catch up on the programming. To mitigate this valid concern, we started several accompanying initiatives that will get
you up to speed such as additional workshop, help desks, etc. Make sure to join our Q&A channels in Zulip and attend
the our Computing Primer.

Problem sets

Thanks to Mila Kiseleva, Tim Mensinger, and Sebastian Gsell we now have four problem sets available on our website.

• Potential outcome model

• Matching

• Regression-discontinuity design

• Generalized Roy model

1.1. Introduction 5
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Just as the whole course, they do not only require you to further digest the material in the course but also require you
to do some programming. They are available on our course website and we will discuss them in due course.

Projects

Applying methods from data science and understanding their potential and limitations is only possible when bringing
them to bear on one’s one research project. So we will work on student projects during the course. More details are
available here.

Data sources

Throughout the course, we will use several data sets that commonly serve as teaching examples. We collected them
from several textbooks and are available in a central place in our online repository here.

Potential outcome model

The potential outcome model serves us several purposes:

• help stipulate assumptions

• evaluate alternative data analysis techniques

• think carefully about process of causal exposure

Basic setup

There are three simple variables:

• 𝐷, treatment

• 𝑌 , observed outcome

• 𝑌1, outcome in the treatment state

• 𝑌0, outcome in the no-treatment state

Examples

• economics of education

• health economics

• industrial organization

• ...

6 Chapter 1. Lectures
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Exploration

We will use our first dataset to illustrate the basic problems of causal analysis. We will use the original data from the
article below:

• LaLonde, R. J. (1986). Evaluating the econometric evaluations of training programs with experimental data.
The American Economic Review, 76(4), 604-620.

He summarizes the basic setup as follows:

The National Supported Work Demonstration (NSW) was temporary employment program desinged to
help disadvantaged workers lacking basic job skills move into the labor market by giving them work expe-
rience and counseling in sheltered environment. Unlike other federally sponsored employment programs,
the NSW program assigned qualified applications randomly. Those assigned to the treatment group re-
ceived all the benefits of the NSW program, while those assigned to the control group were left to fend for
themselves.

What is the effect of the program?

We will have a quick look at a subset of the data to illustrate the fundamental problem of evaluation, i.e. we only
observe one of the potential outcomes depending on the treatment status but never both.

[1]: import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

# We collected a host of data from two other influential textbooks.
df = pd.read_csv("../../datasets/processed/dehejia_waba/nsw_lalonde.csv")
df.index.set_names("Individual", inplace=True)

[2]: df.describe()

[2]: treat age education black hispanic married \
count 722.000000 722.000000 722.000000 722.000000 722.000000 722.000000
mean 0.411357 24.520776 10.267313 0.800554 0.105263 0.162050
std 0.492421 6.625947 1.704774 0.399861 0.307105 0.368752
min 0.000000 17.000000 3.000000 0.000000 0.000000 0.000000
25% 0.000000 19.000000 9.000000 1.000000 0.000000 0.000000
50% 0.000000 23.000000 10.000000 1.000000 0.000000 0.000000
75% 1.000000 27.000000 11.000000 1.000000 0.000000 0.000000
max 1.000000 55.000000 16.000000 1.000000 1.000000 1.000000

nodegree re75 re78
count 722.000000 722.000000 722.000000
mean 0.779778 3042.896575 5454.635848
std 0.414683 5066.143366 6252.943422
min 0.000000 0.000000 0.000000
25% 1.000000 0.000000 0.000000
50% 1.000000 936.307950 3951.889000
75% 1.000000 3993.207000 8772.004250
max 1.000000 37431.660000 60307.930000

[3]: # It is important to check for missing values first.
for column in df.columns:

assert not df[column].isna().any()

1.1. Introduction 7
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Note that this lecture, just as all other lectures, is available on so you can easily continue working on it and take your
exploration to another direction.

There are numerous discrete variables in this dataset describing the individual’s background. How does their distribu-
tion look like?

[4]: columns_background = [
"treat",
"age",
"education",
"black",
"hispanic",
"married",
"nodegree",

]
for column in columns_background:

sns.countplot(x=df[column], color="#1f77b4")
plt.show()
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How about the continous earnings variable?

[5]: columns_outcome = ["re75", "re78"]
for column in columns_outcome:

earnings = df[column]

# We drop all earnings at zero.
earnings = earnings.loc[earnings > 0]

ax = sns.histplot(earnings)
ax.set_xlim([0, None])

plt.show()
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We work under the assumption that the data is generated by an experiment. Let’s make sure by checking the distribution
of the background variables by treatment status.

[6]: info = ["count", "mean", "std"]
for column in columns_background:

print("\n\n", column.capitalize())
print(df.groupby("treat")[column].describe()[info])

Treat
count mean std

treat
0 425.0 0.0 0.0
1 297.0 1.0 0.0

Age
count mean std

(continues on next page)

1.1. Introduction 11
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(continued from previous page)

treat
0 425.0 24.447059 6.590276
1 297.0 24.626263 6.686391

Education
count mean std

treat
0 425.0 10.188235 1.618686
1 297.0 10.380471 1.817712

Black
count mean std

treat
0 425.0 0.800000 0.400471
1 297.0 0.801347 0.399660

Hispanic
count mean std

treat
0 425.0 0.112941 0.316894
1 297.0 0.094276 0.292706

Married
count mean std

treat
0 425.0 0.157647 0.364839
1 297.0 0.168350 0.374808

Nodegree
count mean std

treat
0 425.0 0.814118 0.389470
1 297.0 0.730640 0.444376

What is the data that corresponds to (𝑌, 𝑌1, 𝑌0, 𝐷)?

[7]: # We first create True / False
is_treated = df["treat"] == 1

df["Y"] = df["re78"]
df["Y_0"] = df.loc[~is_treated, "re78"]
df["Y_1"] = df.loc[is_treated, "re78"]

df["D"] = np.nan
df.loc[~is_treated, "D"] = 0
df.loc[is_treated, "D"] = 1

(continues on next page)
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(continued from previous page)

df[["Y", "Y_1", "Y_0", "D"]].sample(10)

[7]: Y Y_1 Y_0 D
Individual
479 6930.336 NaN 6930.336 0.0
94 3881.284 3881.284 NaN 1.0
146 3075.862 3075.862 NaN 1.0
407 20893.110 NaN 20893.110 0.0
269 12590.710 12590.710 NaN 1.0
8 2164.022 2164.022 NaN 1.0
592 0.000 NaN 0.000 0.0
260 0.000 0.000 NaN 1.0
421 3931.238 NaN 3931.238 0.0
35 0.000 0.000 NaN 1.0

Let us get a basic impression on how the distribution of earnings looks like by treatment status.

[8]: df.groupby("D")["re78"].describe()

[8]: count mean std min 25% 50% 75% \
D
0.0 425.0 5090.048302 5718.088763 0.0 0.0000 3746.701 8329.823
1.0 297.0 5976.352033 6923.796427 0.0 549.2984 4232.309 9381.295

max
D
0.0 39483.53
1.0 60307.93

[9]: ax = sns.histplot(df.loc[~is_treated, "Y"], label="untreated")
ax = sns.histplot(df.loc[is_treated, "Y"], label="treated")
ax.set_xlim(0, None)
ax.legend()

[9]: <matplotlib.legend.Legend at 0x7fec7859b0d0>

We are now ready to reproduce one of the key findings from this article. What is the difference in earnings in 1978

1.1. Introduction 13
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between those that did participate in the program and those that did not?

[10]: stat = df.loc[is_treated, "Y"].mean() - df.loc[~is_treated, "Y"].mean()
f"{stat:.2f}"

[10]: '886.30'

Earnings are $886.30 higher among those that participate in the treatment compared to those that do not. Can we say
even more?

References
Here are some further references for the potential outcome model.

• Heckman, J. J., and Vytlacil, E. J. (2007a). *Econometric evaluation of social programs, part I: Causal effects,
structural models and econometric policy evaluation*. In J. J. Heckman, and E. E. Leamer (Eds.), Handbook of
Econometrics (Vol. 6B, pp. 4779–4874). Amsterdam, Netherlands: Elsevier Science.

• Imbens G. W., and Rubin D. B. (2015). *Causal inference for statistics, social, and biomedical sciences: An
introduction*. Cambridge, England: Cambridge University Press.

• Rosenbaum, P. R. (2017). *Observation and experiment: An introduction to causal inference*. Cambridge, MA:
Harvard University Press.

Causal graphs

One unique feature of our core textbook is the heavy use of causal graphs to investigate and assess the validity of different
estimation strategies. There are three general strategies to estimate causal effects and their applicability depends on the
exact structure of the causal graph.

• condition on variables, i.e. matching and regression-based estimation

• exogenous variation, i.e. instrumental variables estimation

• establish an exhaustive and isolated mechanism, i.e. structural estimation

Here are some examples of what to expect.
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https://www.hup.harvard.edu/catalog.php?isbn=9780674975576
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The key message for now:

• There is often more than one way to estimate a causal effect with differing demands about knowledge and ob-
servability

Pearl (2009) is the seminal reference on the use of graphs to represent general causal representations.

References
• Huntington-Klein, N., Arenas, A., Beam, E., Bertoni, M., Bloem, J., Burli, P., Chen, N., Grieco, P., Ekpe,

G., Pugatch, T., Saavedra, M., Stopnitzky, Y. (2021). The influence of hidden researcher decisions in applied
microeconomics, Economic Impuiry, 59, 944–960.

1.1. Introduction 15
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• Pearl, J. (2014). Causality. Cambridge, England: Cambridge University Press.

• Pearl, J., and Mackenzie, D. (2018). The book of why: The new science of cause and effect. New York, NY:
Basic Books.

• Pearl J., Glymour M., and Jewell N. P. (2016). Causal inference in statistics: A primer. Chichester, UK: Wiley.

• Spiegelhalter, D. (2021). The Art of Statistics: Learning from Data. New York: Hachette Book Group.

Resources

• LaLonde, R. J. (1986). Evaluating the econometric evaluations of training programs with experimental data.
The American Economic Review, 76(4), 604-620.

1.2 Potential outcome model

We discuss the core conceptual model of the course. We initially discuss the individual-level treatment effect but then
quickly scale back our ambitions to learn about population-level parameters instead. Then we turn to the stable-unit
treatment assumption and address the challenges to the naive estimation of average causal effects in observational
studies. We conclude with some examples that illustrate the flexibility of the potential outcome model to more than a
simple binary treatment.

1.2.1 Potential outcome model

Introduction

Given what we know from the introduction about the potential outcome model, we will initially prepare the Lalonde
Dataset to fit the framework and use it as a running example going forward.

What are this example’s . . .

• potential outcomes

• counterfactual state

• treatment

[2]: df = get_lalonde_data()
df.head()

[2]: treat re78 Y Y_0 Y_1 D
101 1 9970.681 9970.681 NaN 9970.681 1
611 0 7094.920 7094.920 7094.920 NaN 0
396 0 11223.720 11223.720 11223.720 NaN 0
681 0 4687.937 4687.937 4687.937 NaN 0
397 0 5088.760 5088.760 5088.760 NaN 0

We are dealing with a binary treatment here: 𝐷 = 1 if the individual did participate in the training program and 𝐷 = 0
if it did not. However, in practice assigning treatment is never that easy. We lump a lot of heterogeneity together (e.g.
different sites, content of curriculum) that might affect the success of program participation. Maybe we should stratify
the analysis by site?
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Individual-specific effect of treatment

It would be great if we could get our hands on the individual-specific effect of treatment.

𝛿𝑖 = 𝑦1𝑖 − 𝑦0𝑖

• Why do individuals have potentially different effects of treatment?

[3]: fig, ax = plt.subplots()

x = np.linspace(-5, 5, 5000)
pdf = ss.norm.pdf(x, 0, 1)

ax.plot(x, pdf)

ax.set_xlabel(r"$\delta = Y^1 - Y^0$")
ax.set_ylabel("Density")
x_formatter = FixedFormatter(["", "", "", 0.5, "", "", ""])
x_locator = FixedLocator([-3, -2, -1, 0, 1, 2, 3])
ax.xaxis.set_major_locator(x_locator)
ax.xaxis.set_major_formatter(x_formatter)
ax.set_xlim([-3, 3])
ax.set_ylim([0, 0.5])

[3]: (0.0, 0.5)

There might be considerable heterogeneity in the benefits of treatment among the population. And summarizing the
distribution of benefits with a single number, for example 𝐸[𝛿], might result in a loss of information.

Examples
• medical treatment

•

Give our definitions of (𝑌 1, 𝑌 0, 𝐷) and their individual realizations (𝑦1𝑖 , 𝑦
0
𝑖 , 𝑑𝑖) we can now define the observed out-

come 𝑌 in terms of them.

𝑌 =

{︃
𝑌 1 if 𝐷 = 1

𝑌 0 if 𝐷 = 0

1.2. Potential outcome model 17
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or more compactly in switching-regime notation

𝑌 = 𝐷𝑌 1 + (1−𝐷)𝑌 0.

This leads Holland (1986) to describe the fundamental problem of causal inference:

→ as only the diagonal of the table is observable we cannot simply compute 𝛿𝑖 by taking the difference in potential
outcomes (𝑦1𝑖 , 𝑦

0
𝑖 ).

[4]: df.head()

[4]: treat re78 Y Y_0 Y_1 D
101 1 9970.681 9970.681 NaN 9970.681 1
611 0 7094.920 7094.920 7094.920 NaN 0
396 0 11223.720 11223.720 11223.720 NaN 0
681 0 4687.937 4687.937 4687.937 NaN 0
397 0 5088.760 5088.760 5088.760 NaN 0

Population-level parameters

It looks like we need to give up any hope of obtaining the individual-specific effect of treatment. But what can we still
hope for?

→ population-level parameters

• What are common examples?

• What are the policy questions they address?

• What is their relationship to each other?

𝐸[𝑌 1 − 𝑌 0] 𝐴𝑇𝐸 average effect of treatment
𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 1] 𝐴𝑇𝑇 average effect on treated
𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 0] 𝐴𝑇𝐶 average effect on control

[5]: plot_individual_specific_effects(with_parameters=[0, 0.7, -0.5])

18 Chapter 1. Lectures
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[6]: plot_individual_specific_effects(with_parameters=[0, -0.7, 0.5])

[6]: plot_individual_specific_effects(with_parameters=[0, 0, 0])

1.2. Potential outcome model 19
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Stable unit treatment value assumption

The potential outcome model gets its empirical tractability when combined with the Stable Unit Treatment Value
Assumption (SUTVA) of which there exist many formulations. We will go with the one from Imbens and Rubin
(2015):

The potential outcomes for any unit do not vary with the treatments assigned to other units, and, for each
unit there are no different forms or versions of each treatment level, which lead to different potential out-
comes.

The table below shows all possible assignment patterns for a hypothetical treatment where the only constraint is that
at least one individual remains in the treatment and control group. As we increase participation from one to two
individuals, the potential outcome 𝑌1 declines.

• When do we need to expect this is violated?

– influence patterns that result from contact across individuals in social or physical space

– dilution / concentration patterns that one can assume would result from changes in the prevalence of
treatment

20 Chapter 1. Lectures
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Treatment assignment and observational studies

• randomized experiment

(𝑌 0, 𝑌 1) ⊥⊥ 𝐷

• observational study

A observational study is an empirical investigation of treatments, policies, or exposures and the effects
they cause, but it differs from an experiment in that the investigator cannot control the assignment of
treatments to subjects. (Rosenbaum (2002))

Naive estimation of average causal effects

We will now first outline the problem with the naive estimation of average causal effects. Then we take a closer look
at the different sources of biases involved and finally discuss the set of assumptions used to *solve* these issues.

𝛿𝑁𝐴𝐼𝑉 𝐸 ≡ 𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 1]− 𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 0]

We can further decompose the average treatment effect by treatment status as the individual assignment is mutually
exclusive.

𝐸[𝑌 1 − 𝑌 0] = 𝐸[𝛿] = {𝜋𝐸[𝑌 1 | 𝐷 = 1] + (1− 𝜋)𝐸[𝑌 1 | 𝐷 = 0]}
−{𝜋𝐸[𝑌 0 | 𝐷 = 1] + (1− 𝜋)𝐸[𝑌 0 | 𝐷 = 0]}

The average treatment effect is a function of five unknowns. Which components can be easily computed from data?

𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 1]
𝑝−→ 𝐸[𝑌 1 | 𝐷 = 1] ̸= 𝐸[𝑌 1]

𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 0]
𝑝−→ 𝐸[𝑌 0 | 𝐷 = 0] ̸= 𝐸[𝑌 0]

Biases

𝐸[𝑌 1 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0] = 𝐸[𝛿] + {𝐸[𝑌 0 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0]}⏟  ⏞  
Baseline bias

+ (1− 𝜋) {𝐸[𝛿 | 𝐷 = 1]− 𝐸[𝛿 | 𝐷 = 0]}⏟  ⏞  
Differential treatment effect bias

The additional information provided in the text states that 𝜋 = 0.3 meaning that 30% of the sample participate in the
treatment.

𝐴𝑇𝑇 = 𝐸[𝑌1 − 𝑌0 | 𝐷 = 1] = 10− 6 = 4

𝐴𝑇𝐶 = 𝐸[𝑌1 − 𝑌0 | 𝐷 = 0] = 8− 5 = 3

𝛿𝑁𝐴𝐼𝑉 𝐸 = 𝐸[𝑌1 | 𝐷 = 1]− 𝐸[𝑌0 | 𝐷 = 0] = 10− 5 = 5
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Now we are ready to calculate the average treatment effect:

𝐴𝑇𝐸 = 𝐸[𝑌1 − 𝑌0] = 𝜋 𝐸[𝑌1 − 𝑌0 | 𝐷 = 1] + (1− 𝜋)𝐸[𝑌1 − 𝑌0 | 𝐷 = 0]

= 0.3× 4 + 0.7× 3 = 3.3

Next, we can determine the different components of the bias.

∆base = 𝐸[𝑌 0 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0] = 6− 5 = 1

∆diff = (1− 𝜋) (𝐸[𝛿 | 𝐷 = 1]− 𝐸[𝛿 | 𝐷 = 0]) = 0.7 ((10− 6)− (8− 5)) = 0.7

There are several different representation of the bias when using the naive estimator of mean difference in observed
outcomes by treatment status as an estimate for the effect of treatment. We continue with the exposition in Frölich &
Sperlich (2019) and Heckman, Urzua, & Vytlacil (2006).

𝐸[𝑌 | 𝐷 = 1]− 𝐸[𝑌 | 𝐷 = 0] = 𝐸[𝑌 1 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0]

= 𝐸[𝑌 1 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 1]

+ 𝐸[𝑌 0 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0]

= 𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 1]⏟  ⏞  
𝑇𝑇

+𝐸[𝑌 0 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0]⏟  ⏞  
Selection bias

Now we can simply add and subtract 𝐸[𝑌1 − 𝑌0] to get the more economic version.

𝐸[𝑌 | 𝐷 = 1]− 𝐸[𝑌 | 𝐷 = 0] = 𝐸[𝑌 1 − 𝑌 0]⏟  ⏞  
𝐴𝑇𝐸

+ 𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 1]− 𝐸[𝑌 1 − 𝑌 0]⏟  ⏞  
Sorting on gains

+ 𝐸[𝑌 0 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0]⏟  ⏞  
Sorting on levels

Sorting on levels is simply a different phrase for selection bias.

The exposition in our core textbook is slightly different. Here the term bias has two separate components which are
baseline bias and differential treatment effect bias. See the discussion in the book in the subsection on the typical
inconsistency and bias of the naive estimator. The term baseline bias refers to the concept of sorting and levels and
selection bias.

Differential treatment bias is defined as:

𝐸[𝑌 | 𝐷 = 1]− 𝐸[𝑌 | 𝐷 = 0] = 𝐸[𝛿]⏟ ⏞ 
𝐴𝑇𝐸

+ {𝐸[𝑌 0 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0]}⏟  ⏞  
Baseline bias

+ (1− 𝜋){𝐸[𝛿 | 𝐷 = 1]− 𝐸[𝛿 | 𝐷 = 0]}⏟  ⏞  
Differential treatment effect bias

The last term is derived derived from the term describing selection on gains by the following decomposition.

𝐸[𝑌 1 − 𝑌 0] = 𝜋𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 1] + (1− 𝜋)𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 0]

It is interpreted as the difference in effects between treated and control weighted by the share of control individuals. It
is probably best thought of as an increment to the first term describing the average effect of treatment.
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Assumptions

So, the SUTVA assumption is only necessary but not sufficient to learn about the effect of treatment in light of the biases
discussed above. We are still stuck with several unknowns that we need to compute the average effect of treatment.

Consider the following two assumptions:

𝐸[𝑌 1 | 𝐷 = 1] = 𝐸[𝑌 1 | 𝐷 = 0]

𝐸[𝑌 0 | 𝐷 = 1] = 𝐸[𝑌 0 | 𝐷 = 0]

and recall our naive estimate

𝛿𝑁𝐴𝐼𝑉 𝐸 = 𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 1]− 𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 0]
𝑝−→ 𝐸[𝑌 1 | 𝐷 = 1]− 𝐸[𝑌 0 | 𝐷 = 0]

• What assumptions suffice to estimate the ATE with the naive estimator?

– about potential outcomes for subsets of the population

– about the treatment selection / assignment process

Missing data and imputation

This is an adopted example from Imbens & Rubin (2015).

[84]: df = get_lalonde_data()
df.head()

[84]: treat re78 Y Y_0 Y_1 D
100 1 0.000 0.000 NaN 0.0 1
561 0 5670.820 5670.820 5670.820 NaN 0
130 1 0.000 0.000 NaN 0.0 1
318 0 0.000 0.000 0.000 NaN 0
687 0 7659.218 7659.218 7659.218 NaN 0

We can impute the missing values simply by their average counterpart.

[71]: is_treated = df["D"] == 1

df.loc[~is_treated, "Y_1"] = df.loc[is_treated, "Y"].mean()
df.loc[is_treated, "Y_0"] = df.loc[~is_treated, "Y"].mean()

[50]: df.head()

[50]: treat re78 Y Y_0 Y_1 D
479 0 6930.336 6930.336 6930.336 NaN 0
480 0 3795.799 3795.799 3795.799 NaN 0
343 0 0.000 0.000 0.000 NaN 0
690 0 2652.625 2652.625 2652.625 NaN 0
70 1 0.000 0.000 NaN 0.0 1

[72]: initial_stat = (df["Y_1"] - df["Y_0"]).mean()
print(f"Our estimated treatment effect is {initial_stat:10.2f}")
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Our estimated treatment effect is 886.30

However, this does not really account for any uncertainty in our estimate. Can we do better? We now switch to the
imputation of the counterfactual outcome on the individual level.

[80]: np.random.seed(123) # set seed to ensure reproducibility
df = get_lalonde_data() # get the original data

status_counts = df["D"].value_counts().to_dict()

stats = list()
for _ in range(100):

y_1_sampled = df["Y_1"].dropna().sample(n=status_counts[0], replace=True).values
y_0_sampled = df["Y_0"].dropna().sample(n=status_counts[1], replace=True).values

df_boot = df.copy()

is_treated = df_boot["D"] == 1
df_boot.loc[is_treated, "Y_0"] = y_0_sampled
df_boot.loc[~is_treated, "Y_1"] = y_1_sampled

stat = (df_boot["Y_1"] - df_boot["Y_0"]).mean()
stats.append(stat)

print(f"Our estimated treatment effect is {np.mean(stats):10.2f}")

Our estimated treatment effect is 907.86

How does the full distribution of estimates look like?

[74]: fig, ax = plt.subplots()
ax.hist(stats)
ax.set_xlabel("Statistic")
ax.set_ylabel("Frequency")
ax.vlines(initial_stat, 0, 30, linestyles="--", label="Initial", color="lightgrey")
ax.legend()

[74]: <matplotlib.legend.Legend at 0x1e0ed15f7c0>
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Still some limitations remains. For example, we do sample from the empirical distribution of the observed outcomes
and not the actual distribution. Phrased differently, we treat the distribution of potential outcomes as known and abstract
from any uncertainty in our knowledge about it.

Extensions of the binary potential outcome model

• over-time potential outcomes and causal effects

– a single unit over time (time series data)

– many units over time (panel data)

• many-valued treatments

Over-time potential outcomes

We explore the case of a single unit over time.

Ingredients
• discrete time periods, 𝑡 ∈ {1, ..., 𝑇}

• sequence of observed values, {𝑦1, 𝑦2, ..., 𝑦𝑇 }

• treatment initiated in 𝑡*

• duration of treatment 𝑘

Setting up the potential outcome model to explore the basic features of before-and-after designs for a single unit of
analsysis.

• before the treatment is introduced (for 𝑡 < 𝑡*):

𝐷𝑡 = 0

𝑌𝑡 = 𝑌 0
𝑡

• while the treatment is in place (from 𝑡* through 𝑡* + 𝑘):

𝐷𝑡 = 1

𝑌𝑡 = 𝑌 1
𝑡

𝑌 0
𝑡 exists but is counterfactual

• after the treatment ends (for time periods 𝑡 > (𝑡* + 𝑘)):

𝐷𝑡 = 0

𝑌𝑡 = 𝑌 0
𝑡

𝑌 1
𝑡 exists but is counterfactual

The following is an adapted example from our textbook.
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Year of the fire horse

We study the effect of Japanese folk belief that families who give birth to babies will suffer untold miseries. This
example does not only illustrative the versatility of the potential outcome framework but also serves as an example that
different approaches (informed by domain-expertise) can result in different reasonable imputations for the counterfac-
tual outcome.

The treatment indicator is as follows: 𝐷1966 = 1 and �̸�=1966 = 0 and we are interested in its effect on the birth rate in
Japan

𝛿1966 = 𝑦11966 − 𝑦01966.

A reasonable approach is to estimate it by:

𝛿1966 = 𝑦1966 − 𝑦01966

[85]: df = pd.read_csv("material/world_bank.csv", skiprows=4)
df.set_index("Country Code", inplace=True)
df.drop(["Indicator Name", "Indicator Code"], axis=1, inplace=True)

df = df.loc["JPN", "1960":"2017"]
df = df.to_frame()
df.index.name = "Year"
df.columns = ["Birth rate"]

df.sort_index(inplace=True)
df.index = df.index.astype(int)
df.head()

[85]: Birth rate
Year

(continues on next page)
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(continued from previous page)

1960 17.3
1961 17
1962 17.1
1963 17.4
1964 17.8

Let’s get to work.

[86]: fig, ax = plt.subplots()
ax.plot(df["Birth rate"].index, df["Birth rate"])
ax.set_ylabel("Birth rate")
ax.set_xlabel("Year")

[86]: Text(0.5, 0, 'Year')

[87]: df.loc[slice(1960, 1970), "Birth rate"]

[87]: Year
1960 17.3
1961 17
1962 17.1
1963 17.4
1964 17.8
1965 18.7
1966 13.8
1967 19.4
1968 18.7
1969 18.5
1970 18.7
Name: Birth rate, dtype: object

We can just take the year before or after treatment?

[88]: estimates = list()
for label, year in [("before", 1965), ("after", 1967)]:

y_0 = df.loc[year, "Birth rate"]
(continues on next page)
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(continued from previous page)

y_1 = df.loc[1966, "Birth rate"]
print(f" Using the year {label}, the treatment effect is {y_1 - y_0:10.5f}")
estimates.append(y_1 - y_0)

Using the year before, the treatment effect is -4.90000
Using the year after, the treatment effect is -5.60000

Among demographers, there is the consensus that taking the average of 1963 and 1969 the way to go instead.

[89]: y_0 = df.loc[[1963, 1969], "Birth rate"].mean()
y_1 = df.loc[1966, "Birth rate"]
print(" Another treatment effect is {:10.5f}".format(y_1 - y_0))
estimates.append(y_1 - y_0)

Another treatment effect is -4.15000

Now we have multiple effects of treatment. Which is it?

[90]: labels = ["Before", "After", "Average"]
fig, ax = plt.subplots()
ax.bar(labels, estimates)
ax.set_ylabel("Effect")

[90]: Text(0, 0.5, 'Effect')
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Additional resources

• Imbens, G. W. (2020). Potential outcome and directed acyclic graph approaches to causality: Relevance for
empirical practice in economics, Journal of Economic Literature, 58(4), 1129-79.

Resources

• Frölich, M., and Sperlich, S. (2019) . Impact evaluation: Treatment effects and causal analysis. Cambridge,
England: Cambridge University Press.

• Heckman, J. J., Urzua, S. and Vytlacil, E. (2006). Understanding instrumental variables in models with es-
sential heterogeneity. Review of Economics and Statistics, 88(3), 389–432.

• Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81(396),
945–960.

• Imbens, G. W., and Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. New
York, NY: Cambridge University Press.

• Rosenbaum, P. R. (2002). Overt bias in observational studies. Observational studies, 71–104.

1.3 Causal graphs

We explore the usefulness of causal graphs for the visualization of complex causal systems and the clarification of
alternative identification strategies for causal effects. After establishing their basic notation and some key concepts, we
link them to structural equations and the potential outcome model.

1.3.1 Causal graphs

Introduction

Graph notation less general than potential outcome framework, but

• thinking about causal systems

• uncover identification strategies

It is useful to separate the inferential problem into statistical and identification components. Studies of
identification seek to characterize the conclusions that could be drawn if one could use the sampling
process to obtain an unlimited number of observations. (Manski, 1995)

The two most crucial ingredients for an identification analysis are:

• The set of assumptions about causal relationships that the analysis is willing to assert based on theory and past
research, including assumptions about relationships between variables that have not been observed but that are
related both to the cause and outcome of interest.

• The pattern of information one can assume would be contained in the joint distribution of the variables
(associations) in the observed dataset if all members of the population had been included in the sample that
generated the dataset.

→ causal graphs offer an effective and efficient representation for both
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Basic elements of causal graphs

• nodes

• edges

• directed paths

– parent and child

– descendant

Two representations of the joint dependence of 𝐴 and 𝐵 on an unobserved common cause.

Let’s look at some basic patterns that will turn out to appear frequently.

• chain of mediation

• fork of mutual causation

• inverted fork of mutual dependence
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What about the unconditional and conditional association of 𝐴 and 𝐵 in each of these cases?

• While there is unconditional dependence between them in the first two cases, there is not in the third.

The collider variable 𝐶 in the third setting does not generate an unconditional association between 𝐴 and 𝐵. However,
as we will revisit in more detail later, it can create a conditional association that needs to be handled with care.

Conditioning and confounding

The causal effects 𝐶 → 𝐷 and 𝐶 → 𝑌 render the total association between 𝐷 and 𝑌 unequal to the causal effect
𝐷 → 𝑌 .

• 𝐶 is a confounding variable that affects both the dependent and independent variable.

• Conditioning is a modelig strategy that allows to determine causal effects in the presence of observed con-
founders.

→What happens if 𝐶 is unobserved?

How about an example from educational choice where we have observed and unobserved confounders?
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What identification strategies come to mind?

Link to structural equations

Let’s look at another example and assume we are interested in the effect of parental background (P), charter schools
(D), and neighborhoods (N) on test scores (Y).

We could set up the following linear regression equations:

𝐷 = 𝛼𝐷 + 𝑏𝑃𝑃 + 𝜖2

𝑌 = 𝛼𝑌 + 𝑏𝐷𝐷 + 𝑏𝑃𝑃 + +𝑏𝑁𝑁 + 𝜖4
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We can set up the same nonparametric structural equations for both representations:

𝑃 = 𝑓𝑃 (𝜖1)

𝑁 = 𝑓𝑁 (𝜖3)

𝐷 = 𝑓𝐷(𝑃, 𝜖2)

𝑌 = 𝑓𝑌 (𝑃,𝐷,𝑁, 𝜖4)

How to simulate a sample from a set of structural equations?

[2]: indices = list()
[indices.append(label) for label in product([("alpha")], ("D", "Y"))]
[indices.append(label) for label in product([("beta")], ("P", "N", "D"))]
index = pd.MultiIndex.from_tuples(indices, names=["group", "element"])

values = [1, 1, 0.8, 0.7, -0.3]
params = pd.Series(values, index=index)

# distributional assumptions
get_unobservable = np.random.normal
get_observable = np.random.uniform

num_agents = 10000

df = pd.DataFrame(columns=["Y", "D", "P", "N"])

for i in range(num_agents):
P, N = get_observable(size=2)

D = params.loc["alpha", "D"] + params.loc["beta", "P"] * P + get_unobservable()

Y = (
params.loc["alpha", "Y"]
+ params.loc["beta", "D"] * D
+ params.loc["beta", "P"] * P

(continues on next page)
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(continued from previous page)

+ params.loc["beta", "N"] * N
+ get_unobservable()

)

df.loc[i] = [Y, D, P, N]

df.head()

[2]: Y D P N
0 1.248681 3.289100 0.928133 0.297718
1 1.791849 1.665443 0.221006 0.472631
2 1.181537 0.400000 0.366633 0.706849
3 1.875180 1.226666 0.189232 0.916127
4 3.442131 1.271353 0.025105 0.976486

Now lets see if we can uncover the structural parameters by a simple ordinary-least-squares regression and thus go full
circle from a parametric structural equation model to a causal graph.

[3]: params

[3]: group element
alpha D 1.0

Y 1.0
beta P 0.8

N 0.7
D -0.3

dtype: float64

[4]: smf.ols(formula="Y ~ D + P + N", data=df).fit().summary()

[4]: <class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.143
Model: OLS Adj. R-squared: 0.143
Method: Least Squares F-statistic: 556.2
Date: Tue, 04 May 2021 Prob (F-statistic): 0.00
Time: 21:05:08 Log-Likelihood: -14101.
No. Observations: 10000 AIC: 2.821e+04
Df Residuals: 9996 BIC: 2.824e+04
Df Model: 3
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.9686 0.028 34.853 0.000 0.914 1.023
D -0.2997 0.010 -30.384 0.000 -0.319 -0.280
P 0.8276 0.035 23.439 0.000 0.758 0.897
N 0.7401 0.034 21.574 0.000 0.673 0.807
==============================================================================
Omnibus: 2.466 Durbin-Watson: 1.998

(continues on next page)
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(continued from previous page)

Prob(Omnibus): 0.291 Jarque-Bera (JB): 2.400
Skew: -0.010 Prob(JB): 0.301
Kurtosis: 2.927 Cond. No. 8.68
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
"""

Link to potential outcome model

Advantages of the potential outcome model

• definition of causal effects

• individual effects as first principle

• decomposition of sources of inconsistency

• . . .

However, it is hard to manage the notion for larger causal systems with many confounding variables and treatments.

Based on our previous discussion, unfortunately, 𝐸[𝑌1 − 𝑌0] ̸= 𝐸[𝑌 | 𝐷 = 1]− 𝐸[𝑌 | 𝐷 = 0].

How can we define the treatment effects from the potential outcome model in here?

Interventions and counterfactuals are defined through a mathematical operator called 𝑑𝑜(·), which simu-
lates physical interventions by deleting certain functions from the model, replacing them with a constant.
(Pearl, 2012)

𝐸[𝑌1 − 𝑌0] corresponds to 𝐸[𝑌 | 𝑑𝑜(𝐷 = 1)]− 𝐸[𝑌 | 𝑑𝑜(𝐷 = 0)]

The 𝑑𝑜(·) operator is the exact analog to the superscripts given to potential outcomes in order to designate the underlying
causal states that define them.

Graphical presentation of 𝑑𝑜(·) operator
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The 𝑑𝑜(·) operator induces a key distinction between the conditional distribution of the endogenous variable and its
interventional distribution.

Let’s simulate a sample from a parametrized version of the graph above.

[5]: np.random.seed(123)

num_agents = 1000
df = pd.DataFrame(columns=["Y", "D", "C"])

def calculate_outcome(C, D):
"""We compute the observed outcome."""
# If you would like to have it in potential
# outcome notation.
Y_1 = 1 + C
Y_0 = 0 + C
Y = D * Y_1 + (1 - D) * Y_0

# So what is the individual treatment effect?:

return Y

for i in range(num_agents):
C = np.random.uniform()
D = np.random.choice([0, 1], p=[C, 1 - C])
Y = calculate_outcome(C, D)
df.loc[i] = [Y, D, C]

df.head()

[5]: Y D C
(continues on next page)
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(continued from previous page)

0 1.696469 0.0 0.696469
1 1.226851 1.0 0.226851
2 1.719469 0.0 0.719469
3 1.980764 0.0 0.980764
4 1.480932 0.0 0.480932

We know how to compute and plot a conditional distribution.

[6]: plot_conditional_distribution(df)

How can we compute the interventional distribution? What do we need to know to do that?

[7]: Y_do_1, Y_do_0 = list(), list()
for i, row in df.iterrows():

# Note that we calculate the outcome using the
# individual"s actual C put simply set D to
# its value unter the intervetion.
C, D = row["C"], 1
Y_do_1 += [calculate_outcome(C, D)]

C, D = row["C"], 0
Y_do_0 += [calculate_outcome(C, D)]

plot_interventional_distribution(Y_do_1, Y_do_0)
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Resources

• Manski, C. F. (1995). Identification problems in the social sciences. Cambridge, UK: Harvard University Press.

• Pearl, J. (2012). The do-calculus revisited.

• Peters, J., Janzig, D., and Schölkopf, B. (2018). Elements of causal inference: Foundations and learning
algorithms. Cambridge, MA: The MIT Press.

• Imbens, G. W. (2020). Potential outcome and directed acyclic graph approaches to causality: Relevance for
empirical practice in economics. Journal of Economic Literature, 58(4).

• Hünermund, P. and Bareinboim, E. (2019). Causal inference and data-fusion in econometrics. arXiv preprint
arXiv:1912.09104.

• Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96-146.

1.4 Randomized Experiments

A lecture on randomized experiments will be part of the next iteration of the OSE data science course, summer semester
2022. Details on this lecture will be realized soon.

1.4.1 Randomized experiments

• Athey, S., & Imbens, G. (2017). Chapter 3 - The econometrics of randomized experiments, in Handbook of
Economic Field Experiments, 73-140.

• Freedman, D.A. (2008). On regression adjustments to experimental data, Advances in Applied Mathematics,
40(2), 180-193.
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1.5 Conditioning estimators

We study the basic conditioning strategy for the estimation of causal effects. We first link the concept of conditioning
to direct graphs and start discussing the concept of a back-door path. Then we illustrate in a simulated example how
collider variables induce a conditional association between two independent variables. Finally, we discuss the back-
door criterion and work through some examples.

1.5.1 Conditioning estimators

Introduction

Approaches to the estimation of causal effects
• conditioning on variable that block all back-door paths from the causal variable to the outcome variable

• using exogenous variation in an appropriate instrumental variable to isolate covariation in the causal variable and
the outcome variable

• establishing the exhaustive and isolated mechanism that intercepts the effect of the causal variable on the outcome
variable and then calculating the causal effect as it propagates through the mechanisms

Conditioning and directed graphs

This graph is an example where a simple mean-comparison between the treated and untreated is not informative on the
effect of the treatment.

• The total association between 𝐷 and 𝑌 is an unknown composite of the true causal effect 𝐷 → 𝑌 and the
noncausal association between 𝐷 and 𝑌 .

Conditioning strategies
• balancing the determinants of treatment assignment (e.g. matching estimators)

• adjusting for all other causes of the outcome (e.g. regression estimators)

Back-door path
A back-door path is a path between any causally ordered sequence of two variables that begins with a directed edge
that points to the first variable. In the example above, we have two paths: (1) 𝐷 → 𝑌 , and (2) 𝐷 ← 𝐶 → 𝑂 → 𝑌 .
The former is a causal path, while the latter is a back-door path.

LaLonde dataset
What was the graph behind our analysis of the Lalonde dataset?
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Illustration of collider variables

We introduced collider variables earlier. However, they will play a very important role going forward as conditioning
on a collider variable that lies along an back-door path does not help to block that path, but instead creates new as-
sociations. Thus, we initially study in an illustration how conditioning on a collider induces a conditional association
between two variables without an unconditional association.

[2]: num_individuals = 250

# Initialize empty data frame
columns = ["SAT", "motivation", "admission"]
df = pd.DataFrame(columns=columns, index=range(num_individuals))

df["motivation"] = np.random.normal(size=num_individuals)
df["SAT"] = np.random.normal(size=num_individuals)

(continues on next page)
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(continued from previous page)

# Both toghether determine college admission
score = df["motivation"] + df["SAT"]
cutoff = np.percentile(df["motivation"] + df["SAT"], 85)
df["admission"] = score > cutoff
df.head()

[2]: SAT motivation admission
0 -1.030933 1.127653 False
1 0.163968 1.051246 False
2 0.446524 -0.906215 False
3 0.441111 1.977908 True
4 1.190139 0.551189 True

[3]: def get_joint_distribution(df):
sns.jointplot(x="SAT", y="motivation", data=df)

stat = stats.pearsonr(df["SAT"], df["motivation"])[0]
print(f"The Pearson correlation coefficient is {stat:7.3f}")

get_joint_distribution(df)

The Pearson correlation coefficient is 0.023

What happens if we condition on college admittance 𝐶, i.e. on a collider variable?
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[4]: get_joint_distribution(df.query("admission == True"))

The Pearson correlation coefficient is -0.836

Conditioning on a collider variable that lies along a back-door path does not help to block the back-door path but instead
creates new associations.

The back-door criterion

The back-door criterion allows to determine the whether or not conditioning on a given set of observed variables will
identify the causal effect of interest.

• Step 1 Write down the back-door paths from the causal variable to the outcome variable, determine which ones
are unblocked, and then search for a candidate conditioning set of observed variables that will block all unblocked
back-door paths.

• Step 2 If a candidate conditioning set is found that blocks all back-door paths, inspect the patterns of decent in
the graph in order to verify that the variables in the candidate conditioning set do not block or otherwise adjust
away any portion of the causal effect of interest.

If one or more back-door paths connect the causal variable to the outcome variable, the causal effect is identified by
conditioning on a set of variables 𝑍 if

Condition 1 All back-door paths between the causal variable and the outcome variable are blocked after conditioning
on 𝑍, which will always be the case if each back-door path

• contains a chain of mediation 𝐴→ 𝐶 → 𝐵 where the middle variable 𝐶 is in 𝑍

• contains a fork of mutual dependence 𝐴← 𝐶 → 𝐵, where the middle variable 𝐶 is in 𝑍
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• contains an inverted fork of mutual causation 𝐴 → 𝐶 ← 𝐵, where the middle variable 𝐶 and all of 𝐶’s
decendents are not in 𝑍

and . . .

Condition 2 No variables in 𝑍 are decendents of the causal variable that lie on (or decend from other variables that lie
on) any of the directed paths that begin at the causal variable and reach the outcome variable.

Let’s revisit our example earlier and test our vocabulary.

We have a chain of mediation from 𝐶 → 𝑂 → 𝑌 and a fork of mutual dependence with 𝐷 ← 𝐶 → 𝑂.

We will now work through two more advanced examples where we focus on only the first conditions of the back-door
criterion. Let’s start with a simple example and apply the idea of back-door identification to a graph where we consider
conditioning on a lagged outcome variable 𝑌𝑡−1.

There exist two back-door paths and 𝑌𝑡−1 lies on both of them. However, conditioning on it does not satisfy the back-
door criterion. It blocks one path. 𝑌𝑡−1 is a collider variable on one of the paths.

Let us practice our understanding for some interesting graph structures. The backdoor algorithm is also available here
for your reference.

Let’s study the following causal graph:
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Consider the following three candidate conditioning sets. Any thoughts?

• {𝐹}

• {𝐴}

• {𝐴,𝐵}

Finally, let’s focus on the second condition.

• Condition 2 No variables in 𝑍 are decendents of the causal variable that lie on (or decend from other variables
that lie on) any of the directed paths that begin at the causal variable and reach the outcome variable.

We first look at a graph that illustrates what a descendent is and remind ourselves of the difference between a direct
and an indirect effect.

Conditioning on 𝑁 (in addition to either 𝐶 or 𝑂) does not satisfy the back-door criterion due to its violation of the
second condition.

How about this causal structure:
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Let’s evaluate the candidate conditioning set {𝑂,𝐵} together.

By now you probably recognized the mechanical nature of checking the back-door criterion for a given causal graph.
Here are some automated tools to make your life easier in the future, but also allow you to practice your own under-
standing.

• DAGitty — draw and analyze causal diagrams

1.6 Matching estimators

We review the fundamental concepts of matching such as stratification of data, weighting to achieve balance, and
propensity scores. We explore several alternative implementations as we consider matching as conditioning via strati-
fication, matching as a weighing approach, and matching as a data analysis algorithm. Throughout we heavily rely on
simulated examples to explore some practical issues such as sparsity of data.

1.6.1 Matching estimators of causal effects

Introduction

There exists only one back-door path 𝐷 ← 𝑆 ↔ 𝑋 → 𝑌 and both 𝑆 nor 𝑋 are observable. Thus, we have a choice to
condition on either one of them.

• 𝑋 , regression estimator, adjustment-for-other-causes conditioning strategy

• 𝑆, matching estimator, balancing conditioning strategy
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Agenda
• matching as conditioning via stratification

• matching as weighting

• matching as data analysis algorithm

Fundamental concepts
• stratification of data

• weighting to achieve balance

• propensity scores

Views on matching
• method to form quasi-experimental contrasts by sampling comparable treatment and control cases

• nonparametric method of adjustment for treatment assignment patterns

Simulation data
The simulated data is inspired by real-world applications and thus rather complex. Nevertheless, the will serve as
examples for several of the upcoming lectures. That is why we will invest some time initially to set up one of them in
details.

Matching as conditioning via stratification

Individuals within groups determined by 𝑆 are entirely indistinguishable from each other in all ways except

• observed treatment status

• differences in potential outcomes that are independent of treatment status

More formally, we are able to assert the following conditional independence assumptions.

𝐸[𝑌 1 | 𝐷 = 1, 𝑆] = 𝐸[𝑌 1 | 𝐷 = 0, 𝑆] (1.1)
𝐸[𝑌 0 | 𝐷 = 1, 𝑆] = 𝐸[𝑌 0 | 𝐷 = 0, 𝑆] (1.2)

implied by . . .

• treatment assignment is ignorable

• selection on observables

ATC

𝐸[𝛿 | 𝐷 = 0, 𝑆] = 𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 0, 𝑆]

= 𝐸[𝑌 1 | 𝐷 = 0, 𝑆]− 𝐸[𝑌 0 | 𝐷 = 0, 𝑆]

= 𝐸[𝑌 1 | 𝐷 = 1, 𝑆]− 𝐸[𝑌 0 | 𝐷 = 0, 𝑆]

= 𝐸[𝑌 | 𝐷 = 1, 𝑆]− 𝐸[𝑌 | 𝐷 = 0, 𝑆]

ATT

𝐸[𝛿 | 𝐷 = 1, 𝑆] = 𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 1, 𝑆]

= 𝐸[𝑌 1 | 𝐷 = 1, 𝑆]− 𝐸[𝑌 0 | 𝐷 = 1, 𝑆]

= 𝐸[𝑌 | 𝐷 = 1, 𝑆]− 𝐸[𝑌 | 𝐷 = 0, 𝑆]
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Note that each of the two derivations above, requires only one of the two conditional independence assumptions.

Let’s turn to our first simulation exercise:

All the things we can learn:

• naive estimate

• average effect of treatment

• average effect of treatment on controls

• average effect of treatment on treated

Notable features
• The gains from treatment participation differ in each stratum and those that have the most to gain are more likely

to participate. So unconditional independence between 𝐷 and (𝑌 1, 𝑌 2) does not hold.

Let’s study these idealized conditions for a simulated dataset.

[2]: def get_sample_matching_demonstration_1(num_agents):
"""Simulate sample

Simulates a sample based for mathcing demonstration one using the information␣
→˓provided
in Table 6.1.

Args:
num_agents: An integer that specifies the number of individuals

to sample.

Returns:
Returns a dataframe with the observables (Y, S, D) as well as
the unobservables (Y_1, Y_0).

"""

def get_potential_outcomes(s):
"""Get potential outcomes.

(continues on next page)
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(continued from previous page)

Assigns the potential outcomes based on the observable S and
the information in Table 6.1.

Notes:
The two potential outcomes are solely a function of the
observable and are not associated with the treatment
variable D.

Args:
s: an integer for the value of the stratification variable

Returns:
A tuple with the two potential outcomes.

"""
if s == 1:

y_1, y_0 = 4, 2
elif s == 2:

y_1, y_0 = 8, 6
elif s == 3:

y_1, y_0 = 14, 10
else:

raise AssertionError

# We want some randomness.
y_1 += np.random.normal()
y_0 += np.random.normal()

return y_1, y_0

# Store some information about the sample variables
# and initialize an empty dataframe.
info = OrderedDict()
info["Y"] = float
info["D"] = int
info["S"] = int
info["Y_1"] = float
info["Y_0"] = float

df = pd.DataFrame(columns=info.keys())

for i in range(num_agents):
# Simulate from the joint distribution of the
# observables.
deviates = list(product(range(1, 4), range(2)))
probs = [0.36, 0.08, 0.12, 0.12, 0.12, 0.20]
idx = np.random.choice(range(6), p=probs)
s, d = deviates[idx]

# Get potential outcomes and determine observed
# outcome.
y_1, y_0 = get_potential_outcomes(s)
y = d * y_1 + (1 - d) * y_0

(continues on next page)
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# Collect information
df.loc[i] = y, d, s, y_1, y_0

# We want to enforce suitable types for each column.
# Unfortunately, this cannot be done at the time of
# initialization.
df = df.astype(info)

return df

Let us see our simulation in action.

[3]: df = get_sample_matching_demonstration_1(num_agents=1000)
df[["Y", "D", "S"]].head()

[3]: Y D S
0 9.254559 0 3
1 7.651437 0 2
2 13.795799 1 3
3 5.265936 1 1
4 3.856628 1 1

We are in the comfortable position to not only compute the naive estimate but also the true average treatment effect.

[4]: ate_naive = df.query("D == 1")["Y"].mean() - df.query("D == 0")["Y"].mean()
ate_true = df["Y_1"].sub(df["Y_0"]).mean()

f"The true ATE is {ate_true:4.2f} while its naive estimate is {ate_naive:4.2f}. Why?"

[4]: 'The true ATE is 2.73 while its naive estimate is 5.96. Why?'

What to do?

[5]: df.groupby(["S", "D"])["Y"].mean()

[5]: S D
1 0 2.086518

1 4.187777
2 0 6.032950

1 8.058900
3 0 9.902624

1 14.136920
Name: Y, dtype: float64

Note that the observed outcomes within each stratum correspond to the average potential outcome within the stratum.
We can compute the average treatment effect by looking at the difference within each strata.

[6]: rslt_outc = df.groupby(["S", "D"])["Y"].mean()
rslt_strat = df["S"].value_counts(normalize=True)

ate_est = 0.0
for s in [1, 2, 3]:

ate_est += (rslt_outc.loc[s, 1] - rslt_outc.loc[s, 0]) * rslt_strat[s]
(continues on next page)
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f"The stratified estimate for the ATE is {ate_est:4.2f}"

[6]: 'The stratified estimate for the ATE is 2.80'

The ATT and ATC can be computed analogously just by applying the appropriate weights to the strata-specific effect
of treatment.

More generally.

{𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 1, 𝑠 = 𝑠𝑖]− 𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 0, 𝑠 = 𝑠𝑖]}
𝑝−→ 𝐸[𝑌 1 − 𝑌 0 | 𝑆 = 𝑠] = 𝐸[𝛿 | 𝑆 = 𝑠].

Weighted sums of these stratified estimates can then be taken such as for the unconditional ATE:∑︁
𝑠

{𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 1, 𝑠𝑖 = 𝑠]− 𝐸𝑁 [𝑦𝑖 | 𝑑𝑖 = 0, 𝑠𝑖 = 𝑠]}

* Pr𝑁 [𝑠𝑖 = 𝑠]
𝑝−→ 𝐸[𝛿]

This examples shows all of the basic principles in matching estimators that we will discuss in greater detail in this
lecture.

• Treatment and control subjects are matched together in the sense that they are grouped together into strata.

• An average difference between the outcomes of the treatment and control subjects is estimated, based on a weight-
ing of the strata by common distribution.

Overlap conditions

Let’s introduce our first complication:
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[7]: df = get_sample_matching_demonstration_2(num_agents=1000)
df[["Y", "D", "S"]].head()

[7]: Y D S
0 0.495446 0 1
1 7.495097 1 2
2 7.614248 1 2
3 5.407392 0 2
4 12.524174 1 3

[8]: df.groupby(["S", "D"])["Y"].mean()

[8]: S D
1 0 2.097111
2 0 6.028036

1 8.058439
3 0 9.981168

1 14.023508
Name: Y, dtype: float64

Can we at least learn about the treatment on the treated? What else can we do?

Matching as weighting

As indicated by the stylized example, there are often many strata where we do not have treated and control individuals
available at the same time.

→ combine information from different strata with the same propensity score 𝑝

Definition The estimated propensity score is the estimated probability of taking the treatment as a function of variables
that predict treatment assignment, i.e. Pr[𝐷 = 1 | 𝑆].

→ stratifying on the propensity score itself ameliorates the sparseness problem because the propensity score can be
treated as a single stratifying variable (Rosenbaum & Rubin (1983)).

[9]: # We create a grid for two observable characteristics that drive treatment selection and␣
→˓o
a_grid = np.linspace(0.01, 1.00, 100)
b_grid = np.linspace(0.01, 1.00, 100)

# We need to study some features of this function to
# to get a sense on the underyling economics.
df, counts = get_sample_matching_demonstration_3(a_grid, b_grid)
df.head()

[9]: a b d y y_1 y_0 p
0 0.01 0.03 0 94.788634 102.807448 94.788634 0.332700
1 0.01 0.04 1 107.735609 107.735609 93.808018 0.334033
2 0.01 0.05 0 104.010898 97.937608 104.010898 0.335369
3 0.01 0.05 0 107.356485 98.919732 107.356485 0.335369
4 0.01 0.06 1 109.372171 109.372171 95.717052 0.336708

underlying causal graphs
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We will now look at different ways to construct estimates for the usual causal parameters. So, we first compute their
true counterparts.

[10]: stat = df["y_1"].sub(df["y_0"]).mean()
print(f"ATE true: {stat:5.3f}")

df_treated = df.query("d == 1")
df_control = df.query("d == 0")

stat = df_treated["y"].mean() - df_control["y"].mean()
print(f"ATE naive: {stat:5.3f}")

ATE true: 4.397
ATE naive: 4.846

Let’s collect all effects in a dictionary for use further downstream.

[11]: true_effects = list()
true_effects += [df_treated["y_1"].sub(df_treated["y_0"]).mean()]
true_effects += [df_control["y_1"].sub(df_control["y_0"]).mean()]
true_effects += [(df["y_1"] - df["y_0"]).mean()]

How about the issue of sparsity on the data?

[12]: get_sparsity_pattern_overall(counts)
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[13]: get_sparsity_pattern_by_treatment(counts)

How does the propensity score 𝑃 (𝐷 = 1 | 𝑆) as a function of the observables (𝑎, 𝑏) look like?

[14]: plot_propensity_score(a_grid, b_grid)
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We still must be worried about common support.

[15]: get_common_support(df)

𝛿ATT, weight ≡

(︃
1

𝑛1

∑︁
𝑖:𝑑𝑖=1

𝑦𝑖

)︃
−

(︃∑︀
𝑖:𝑑𝑖=0 𝑟𝑖𝑦𝑖∑︀
𝑖:𝑑𝑖=0 𝑟𝑖

)︃

𝛿ATC, weight ≡

(︃∑︀
𝑖:𝑑𝑖=1

𝑦𝑖

𝑟𝑖∑︀
𝑖:𝑑𝑖=1

1
𝑟𝑖

)︃
−

(︃
1

𝑛0

∑︁
𝑖:𝑑𝑖=0

𝑦𝑖

)︃

𝛿ATE, weight ≡

(︃
1

𝑛

∑︁
𝑖

𝑑𝑖

)︃
𝛿ATT, weight +

(︃
1− 1

𝑛

∑︁
𝑖

𝑑𝑖

)︃
𝛿ATC, weight

Weights

𝑟𝑖 =
𝑝𝑖

1− 𝑝𝑖
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[16]: plot_weights()

We will now turn to some programming as it introduces you to the actual setup for the propensity score estimation and
points towards the issues of potential model misspecification.

[17]: def get_att_weight(df, p):
"""Get weighted ATT.

Calculates the weighted ATT basd on a provided
dataset and the propensity score.

Args:
df: A dataframe with the observed data.
p: A numpy array with the weights.

Returns:
A float which corresponds to the ATT.

"""
df_int = df.copy()
df_int["weights"] = get_odds(p)

value, weights = df_int.query("d == 0")[["y", "weights"]].values.T
att = df_int.query("d == 1")["y"].mean() - np.average(value, weights=weights)

return att

def get_atc_weight(df, p):
"""Get weighted ATC.

Calculates the weighted ATC basd on a provided
dataset and the propensity score.

Args:
df: A dataframe with the observed data.
p: A numpy array with the weights.

(continues on next page)
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Returns:
A float which corresponds to the ATC.

"""
df_int = df.copy()
df_int["weights"] = get_inv_odds(p)

value, weights = df_int.query("d == 1")[["y", "weights"]].values.T
atc = np.average(value, weights=weights) - df.query("d == 0")["y"].mean()

return atc

def get_ate_weight(df, p):
"""Get weighted ATE.

Calculates the weighted ATE basd on a provided
dataset and the propensity score.

Args:
df: A dataframe with the observed data.
p: A numpy array with the weights.

Returns:
A float which corresponds to the ATE.

"""
share_treated = df["d"].value_counts(normalize=True)[1]

atc = get_atc_weight(df, p)
att = get_att_weight(df, p)

return share_treated * att + (1.0 - share_treated) * atc

rslt = dict()
for model in ["true", "correct", "misspecified"]:

print("")
print(model.capitalize())

p = get_propensity_score_3(df, model)

rslt[model] = list()
rslt[model] += [get_att_weight(df, p)]
rslt[model] += [get_atc_weight(df, p)]
rslt[model] += [get_ate_weight(df, p)]

print("estimated: ATT {:5.3f} ATC {:5.3f} ATE {:5.3f}".format(*rslt[model]))
print("true: ATT {:5.3f} ATC {:5.3f} ATE {:5.3f}".format(*true_effects))

True
(continues on next page)
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estimated: ATT 4.567 ATC 4.356 ATE 4.456
true: ATT 4.549 ATC 4.259 ATE 4.397

Correct
Optimization terminated successfully.

Current function value: 0.683753
Iterations 4

estimated: ATT 4.557 ATC 4.349 ATE 4.448
true: ATT 4.549 ATC 4.259 ATE 4.397

Misspecified
Optimization terminated successfully.

Current function value: 0.683792
Iterations 4

estimated: ATT 4.560 ATC 4.344 ATE 4.447
true: ATT 4.549 ATC 4.259 ATE 4.397

If the treatment assignment can be modeled perfectly, one can solve the sparseness problem that afflict finite datasets.

Requirements
• perfect stratification of the propensity-score-estimating equation

– capture all back-door paths

– misspecification of propensity score equation

Matching as data analysis algorithm

𝛿ATT, match =
1

𝑛1

∑︁
𝑖

⎡⎣(𝑦𝑖 | 𝑑𝑖 = 1)−
∑︁
𝑗

𝜔𝑖,𝑗(𝑦𝑗 | 𝑑𝑗 = 0)

⎤⎦

𝛿ATC, match =
1

𝑛0

∑︁
𝑗

[︃∑︁
𝑖

𝜔𝑗,𝑖(𝑦𝑖 | 𝑑𝑖 = 1)− (𝑦𝑗 | 𝑑𝑗 = 0)

]︃

Alternative matching estimators can be represented as different procedures for deriving the weights 𝜔𝑖,𝑗 and 𝜔𝑗,𝑖 in the
two expressions above.

Design choices
• How many matched cases designated for each to-be-matched target?

• How to weigh multiple matched cases if more than one is utilized for each target case?
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Basic variants

• exact matching

– construct counterfactual based on individuals with identical 𝑆

• nearest-neighbor and caliper

– construct counterfactual based on individuals closest on a unidimensional measure (e.g. propensity score),
caliper ensures reasonable maximum distance to neighbor

• interval matching

– construct counterfactual by sorting individuals into segments based on unidimensional metric

• kernel matching

– constructs counterfactual based on all individuals but weights them based on the distance

Benchmarking tutorial

We revisit a simulated version of the data used in Morgan (2001). He contributes to the debate over the size of the
causal of effect of Catholic schooling on test scores. The dataset is provided by the textbook and also available in our
online repository.

Issues
• What is the relative performance of alternative matching estimators?

• What is the consequence of conditioning only on a subset of the variables in the set of perfect stratification
variables 𝑆.

[18]: df = get_sample_matching_demonstration_4()
df.describe()

[18]: y treat asian hispanic black \
count 10000.000000 10000.000000 10000.000000 10000.000000 10000.000000
mean 100.459241 0.105200 0.089800 0.143300 0.096100
std 13.493304 0.306826 0.285909 0.350396 0.294743
min 50.065298 0.000000 0.000000 0.000000 0.000000
25% 91.519660 0.000000 0.000000 0.000000 0.000000
50% 100.303288 0.000000 0.000000 0.000000 0.000000
75% 109.459337 0.000000 0.000000 0.000000 0.000000
max 159.426572 1.000000 1.000000 1.000000 1.000000

natamer urban neast ncentral south \
count 10000.000000 10000.00000 10000.000000 10000.000000 10000.000000
mean 0.007500 0.38910 0.208100 0.264000 0.302200
std 0.086281 0.48757 0.405969 0.440821 0.459234
min 0.000000 0.00000 0.000000 0.000000 0.000000
25% 0.000000 0.00000 0.000000 0.000000 0.000000
50% 0.000000 0.00000 0.000000 0.000000 0.000000
75% 0.000000 1.00000 0.000000 1.000000 1.000000
max 1.000000 1.00000 1.000000 1.000000 1.000000

... ncentralblack southblack twohisp neasthisp \
count ... 10000.000000 10000.000000 10000.000000 10000.000000

(continues on next page)
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(continued from previous page)

mean ... 0.018200 0.050500 0.102100 0.016000
std ... 0.133681 0.218985 0.302795 0.125481
min ... 0.000000 0.000000 0.000000 0.000000
25% ... 0.000000 0.000000 0.000000 0.000000
50% ... 0.000000 0.000000 0.000000 0.000000
75% ... 0.000000 0.000000 0.000000 0.000000
max ... 1.000000 1.000000 1.000000 1.000000

ncentralhisp southhisp yt yc dshock \
count 10000.000000 10000.00000 10000.000000 10000.000000 1.000000e+04
mean 0.014900 0.05590 105.729319 99.727395 7.105427e-18
std 0.121159 0.22974 13.525777 13.202781 2.088954e+00
min 0.000000 0.00000 54.788152 50.065298 -7.765338e+00
25% 0.000000 0.00000 96.848440 91.025084 -1.386373e+00
50% 0.000000 0.00000 105.712292 99.685598 1.763749e-02
75% 0.000000 0.00000 114.828609 108.607459 1.391807e+00
max 1.000000 1.00000 159.790235 151.442150 8.432203e+00

d
count 10000.000000
mean 6.001924
std 2.146356
min -2.142958
25% 4.587783
50% 6.010071
75% 7.438161
max 14.653340

[8 rows x 30 columns]

Let us look at some example covariates.

[19]: example_covariates = ["black", "urban", "test"]
df[example_covariates].describe()

[19]: black urban test
count 10000.000000 10000.00000 10000.000000
mean 0.096100 0.38910 -0.002229
std 0.294743 0.48757 0.991747
min 0.000000 0.00000 -3.862709
25% 0.000000 0.00000 -0.676463
50% 0.000000 0.00000 -0.006683
75% 0.000000 1.00000 0.660488
max 1.000000 1.00000 3.722783

[20]: sns.countplot(x="treat", data=df)

[20]: <AxesSubplot:xlabel='treat', ylabel='count'>
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Is there any hope in identifying the 𝐴𝑇𝐸?

60 Chapter 1. Lectures



OSE data science

There exists systematic treatment effect heterogeneity:

Here comes the key feature that generates the dependence between 𝐷 and 𝑌 based on an unobservable.

𝑦1𝑖 = 𝑦0𝑖 + 𝛿′𝑖 + 𝛿′′𝑖

→ 𝛿′′𝑖 is a associated with one of the potential outcomes and also affects the probability to select treatment. Individuals
that have the most to gain from treatment are more likely to select into treatment.

However, we can still identify the 𝐴𝑇𝑇 . Why?

𝐸[𝛿 | 𝐷 = 1, 𝑆] = 𝐸[𝑌 1 − 𝑌 0 | 𝐷 = 1, 𝑆]

= 𝐸[𝑌 1 | 𝐷 = 1, 𝑆]− 𝐸[𝑌 0 | 𝐷 = 1, 𝑆]

= 𝐸[𝑌 1 | 𝐷 = 1, 𝑆]− 𝐸[𝑌 0 | 𝐷 = 0, 𝑆]

= 𝐸[𝑌 | 𝐷 = 1, 𝑆]− 𝐸[𝑌 | 𝐷 = 0, 𝑆]

We establish a clear benchmark by looking at the true treatment effect.

[21]: stat = (df["yt"] - df["yc"])[df["treat"] == 1].mean()
print(f"The true ATT is {stat:5.3f}")

The true ATT is 6.957

How are doing with respect to common support for the propensity score?

[22]: df = get_sample_matching_demonstration_4()
df["p"] = get_propensity_scores_matching_demonstration_4(df)
get_common_support(df, "treat")

Optimization terminated successfully.
Current function value: 0.252643
Iterations 8
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Now we implement our own nearest neighbor matching routine.

[23]: def nearest_neighbor_algorithm_for_att(df):

# We select all treated individuals
df_control = df.query("treat == 0").reset_index()
df_treated = df.query("treat == 1").reset_index()

# We create a new dataframe wth the nearest neighbor.
df_neighbour = pd.DataFrame(columns=df.columns)

# We want to store the information about the nearest neighbor.
idx_list = list()

for i, (index, row) in enumerate(df_treated.iterrows()):

df_control["distance"] = np.abs(df_control["p"] - row["p"])
idx_ngbr = df_control["distance"].idxmin()

df_neighbour.loc[i, :] = df_control.loc[idx_ngbr, :]

# We want to record the index of the neighbor.
idx_list.append(idx_ngbr)

df_neighbour = df_neighbour.add_suffix("_ngbr")
df_matched = pd.concat([df_treated, df_neighbour], axis=1)

return df_matched, pd.Series(idx_list)

Let’s put our algorithm to work!

[24]: df_matched, idx_series = nearest_neighbor_algorithm_for_att(df)

How well are we able to match individuals based on their propensity score? How does earnings compare between
matched individuals?
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[25]: sns.jointplot(x="p", y="p_ngbr", data=df_matched, xlim=[0, 1], ylim=[0, 1])

[25]: <seaborn.axisgrid.JointGrid at 0x7f1d276227d0>

[26]: sns.jointplot(x="y", y="y_ngbr", data=df_matched, xlim=[70, 140], ylim=[70, 140])

[26]: <seaborn.axisgrid.JointGrid at 0x7f1d276221d0>
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After all this effort, what is our treatment effect estimate?

[27]: stat = (df_matched["y"] - df_matched["y_ngbr"]).mean()
print(f"Here is our estimate for the treatment effect: {stat:5.3f}")

Here is our estimate for the treatment effect: 7.236

How often do we match the same individual?

[28]: idx_series.value_counts()

[28]: 1236 13
1701 11
1129 11
1715 10
3424 6

..
948 1
2998 1
2999 1
3830 1
2047 1
Length: 790, dtype: int64

How do our covariantes balance across treatment status?
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[29]: df.groupby("treat")[example_covariates].mean().T

[29]: treat 0 1
black 0.092646 0.125475
urban 0.337953 0.824144
test -0.039018 0.310690

We now want to revisit the balancing of covariates.

[30]: for col in example_covariates:
print("\n", col)
print(f"treated: {df_matched[col].mean():5.3f}")
print(f"matched: {df_matched[col + '_ngbr'].mean():5.3f}")

black
treated: 0.125
matched: 0.142

urban
treated: 0.824
matched: 0.827

test
treated: 0.311
matched: 0.309

Let’s take a little detour and look at the balancing of observables in the Lalonde dataset.

[31]: df = get_lalonde_data()
df.head()

[31]: data_id treat age education black hispanic married nodegree \
0 Lalonde Sample 1 37 11 1 0 1 1
1 Lalonde Sample 1 22 9 0 1 0 1
2 Lalonde Sample 1 30 12 1 0 0 0
3 Lalonde Sample 1 27 11 1 0 0 1
4 Lalonde Sample 1 33 8 1 0 0 1

re75 re78 Y Y_0 Y_1 D
0 0.0 9930.0460 9930.0460 NaN 9930.0460 1
1 0.0 3595.8940 3595.8940 NaN 3595.8940 1
2 0.0 24909.4500 24909.4500 NaN 24909.4500 1
3 0.0 7506.1460 7506.1460 NaN 7506.1460 1
4 0.0 289.7899 289.7899 NaN 289.7899 1

[32]: example_covariates = ["black", "married", "hispanic", "re75"]
df.groupby("treat")[example_covariates].mean().T

[32]: treat 0 1
black 0.800000 0.801347
married 0.157647 0.168350
hispanic 0.112941 0.094276
re75 3026.682743 3066.098187

The covariates are balanced before any reweighting thanks to the assignment mechanisms.
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Returning to our simulated example. Which matching algorihtm is the best?

Incomplete specification
• missing higher-order interactions in propensity score and omission of cognitive variable

Notes
• The estimates for the incomplete specification are usually much larger.

• Software programs that used the same routine yield very different estimates.
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Resources
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score reweighting and matching estimators, The Review of Economics and Statistics, 96(5), 885-897.

• Heckman, J. J., Ichimura, H., Smith, J. A. and Todd, P. (1998). Characterizing selection bias using experi-
mental data. Econometrica, 66(5), 1017–98.
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Sociology of Education, 74(4), 341–374.
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causal effects. Biometrika, 70(1), 41–55.

• Rosenbaum, P. (2020). Modern algorithms for matching in observational studies, 7, 143-176.

• Rubin, D. (2006). The design versus the analysis of observational studies for causal effects: parallels with the
design of randomized trials, Statistics in Medicine, 26(1), 20-36.
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1.7 Regression estimators

We study the most common form of data analysis by looking at simple regression estimators. We first study them as
a basic descriptive tool that provides the best linear approximation to the conditional expectation function. Then we
turn to the more demanding interpretation that it allows to determine causal effects. We contrast the issues of omitted-
variable bias and selection bias. Finally, we conclude with an illustration of Freedman’s paradox to showcase some of
the challenges in applied empirical work.

1.7.1 Regression estimators of causal effects

Overview
• Regression as a descriptive tool

• Regression adjustment as a strategy to to estimate causal effects

• Regression as conditional-variance-weighted matching

• Regression as an implementation of a perfect stratification

• Regression as supplemental adjustment when matching

• Extensions and other perspectives

• Conclusion
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We start with different ways of using regression

• descriptive tools

– Anscombe quartet

• estimating causal effects

• Freedman’s paradox

Regression as a descriptive tool

Goldberger (1991) motivates least squares regression as a technique to estimate a best-fitting linear approximation to
a conditional expectation function that may be nonlinear in the population.

Best is defined as minimizing the average squared differences between the fitted values and the true values of the
conditional expectations functions.
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[18]: df = get_sample_demonstration_1(num_agents=10000)
df.head()

[18]: Y D S Y_1 Y_0
0 0.113157 0 1 4.055376 0.113157
1 9.479227 0 3 14.146062 9.479227
2 0.409400 0 1 2.081023 0.409400
3 7.087262 1 2 7.087262 5.145585
4 3.338352 0 1 2.825938 3.338352

[19]: df.groupby(["D", "S"])["Y"].mean()

[19]: D S
0 1 2.014537

2 6.032069
3 9.976885

1 1 4.067050
2 8.028103
3 14.025534

Name: Y, dtype: float64

How does the functional form of the conditional expectation look like?

[20]: plot_conditional_expectation_demonstration_1(df)

What does the difference between the two lines tell us about treatment effect heterogeneity?

We will fit four different prediction models using ordinary least squares.

𝑌 = 𝛽0 + 𝛽1𝐷 + 𝛽2𝑆

𝑌 = 𝛽0 + 𝛽1𝐷 + 𝛽2𝑆1 + 𝛽3𝑆2

𝑌 = 𝛽0 + 𝛽1𝐷 + 𝛽2𝑆1 + 𝛽3𝑆2 + 𝛽4𝑆1 *𝐷 + 𝛽5𝑆2 *𝐷

[21]: rslt = smf.ols(formula="Y ~ D + S", data=df).fit()
rslt.summary()
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[21]: <class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.941
Model: OLS Adj. R-squared: 0.941
Method: Least Squares F-statistic: 8.018e+04
Date: Tue, 26 May 2020 Prob (F-statistic): 0.00
Time: 07:30:39 Log-Likelihood: -15339.
No. Observations: 10000 AIC: 3.068e+04
Df Residuals: 9997 BIC: 3.071e+04
Df Model: 2
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept -2.6594 0.027 -98.877 0.000 -2.712 -2.607
D 2.7202 0.025 108.756 0.000 2.671 2.769
S 4.4181 0.014 311.459 0.000 4.390 4.446
==============================================================================
Omnibus: 1.627 Durbin-Watson: 2.023
Prob(Omnibus): 0.443 Jarque-Bera (JB): 1.637
Skew: 0.016 Prob(JB): 0.441
Kurtosis: 2.946 Cond. No. 6.15
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
"""

[22]: df["predict"] = rslt.predict()
df.groupby(["D", "S"])[["Y", "predict"]].mean()

[22]: Y predict
D S
0 1 2.014537 1.758657
2 6.032069 6.176733
3 9.976885 10.594808

1 1 4.067050 4.478865
2 8.028103 8.896941
3 14.025534 13.315017

[23]: plot_predictions_demonstration_1(df)
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Anscombe quartet

The best linear approximation can be the same for very different functions. The Anscombe quartet (Anscombe, 1973)
and many other useful datasets are available in statsmodels as part of the Datasets Package.

[30]: df1, df2, df3, df4 = get_anscombe_datasets()
for i, df in enumerate([df1, df2, df3, df4]):

rslt = smf.ols(formula="y ~ x", data=df).fit()
print(f"\n Dataset {i}")
print(" Intercept: {:5.3f} x: {:5.3f}".format(*rslt.params))

Dataset 0
Intercept: 3.000 x: 0.500

Dataset 1
Intercept: 3.001 x: 0.500

Dataset 2
Intercept: 3.002 x: 0.500

Dataset 3
Intercept: 3.002 x: 0.500

So what does the data behind these regressions look like?

[31]: plot_anscombe_dataset()

1.7. Regression estimators 71

https://www.statsmodels.org/0.8.0/datasets/index.html


OSE data science

Regression adjustment as a strategy to estimate causal effects

Regression models and omitted-variable bias

𝑌 = 𝛼 + 𝛿𝐷 + 𝜖

• 𝛿 is interpreted as an invariant, structural causal effect that applies to all members of the population.

• 𝜖 is a summary random variable that represents all other causes of 𝑌 .

𝛿𝑂𝐿𝑆,bivariate =
𝐶𝑜𝑣𝑁 (𝑦𝑖, 𝑑𝑖)

𝑉 𝑎𝑟𝑁 (𝑑𝑖)

It now depends on the correlation between 𝜖 and 𝐷 whether 𝛿 provides an unbiased and consistent estimate of the true
causal effect
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We now move to the potential outcomes model to clarify the connection between omitted-variable bias and self-
selection bias.

Potential outcomes and omitted-variable bias

𝑌 = 𝜇0⏟ ⏞ 
𝛼

+ (𝜇1 − 𝜇0)⏟  ⏞  
𝛿

𝐷 + {𝜈0 + 𝐷(𝜈1 − 𝜈0)}⏟  ⏞  
𝜖

,

where 𝜇0 ≡ 𝐸[𝑌 0], 𝜇1 ≡ 𝐸[𝑌 1], 𝜈0 ≡ 𝑌 0 − 𝐸[𝑌 0], and 𝜈1 ≡ 𝑌 1 − 𝐸[𝑌 1].

What induces a correlation between 𝐷 an {𝜈0 + 𝐷(𝜈1 − 𝜈0)}?

• baseline bias, there is a net baseline difference in the hypothetical no-treatment state that is correlated with
treatment uptake→ 𝐷 is correlated with 𝜈0

• differential treatment bias, there is a net treatment effect difference that is correlated with treatment uptake→
𝐷 is correlated with 𝐷(𝜈1 − 𝜈0)

Errata
Please note that there is a relevant correction on the author’s website:

• page 198, Table 6.2, first panel: In order to restrict the bias to differential baseline bias only, as required by the
label on the first panel of the table, replace 20 with 10 in the first cell of the second row.Then, carry the changes
across columns so that (a) the values for 𝜈1𝑖 are 5 for the individual in the treatment group and -5 for the individual
in the control group and (b) the value for 𝜈0𝑖 + 𝐷(𝜈1𝑖 𝜈

0
𝑖 ) is 5 for the individual in the treatment group

Group 𝑦1𝑖 𝑦0𝑖 𝜈1𝑖 𝜈0𝑖 𝑦𝑖 𝑑𝑖 𝜈1𝑖 + 𝑑𝑖(𝜈
1
𝑖 − 𝜈0𝑖 ) $ d_i (𝜈_𝑖ˆ1 −

𝜈_𝑖ˆ0)$
Treated 20 10 5 5 20 1 5.000000000000000000000000 0.000000000
Control 10 0 -5 -5 0 0 -5 0.000000000
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Regression as adjustment for otherwise omitted variables

We first want to illustrate how we can subtract out the dependence between 𝐷 and 𝑌 induced by their common deter-
minant 𝑋 . Let’s quickly simulate a parameterized example:

𝐷 = 𝐼[𝑋 + 𝜂 > 0]

𝑌 = 𝐷 + 𝑋 + 𝜖,

where (𝜂, 𝜖) follow a standard normal distribution.

[118]: df = get_quick_sample(num_samples=1000)

We now first run a complete regression.

[122]: stat = smf.ols(formula="Y ~ D + X", data=df).fit().params[1]
print(f"Estimated effect: {stat:5.3f}")

Estimated effect: 0.924

However, as it turns out, we can also get the identical estimate by first partialling out the effect of 𝑋 on 𝐷 as well as 𝑌 .

[127]: df_resid = pd.DataFrame(columns=["Y_resid", "D_resid"])
for label in ["Y", "D"]:

column, formula = f"{label}_resid", f"{label} ~ X"
df_resid.loc[:, column] = smf.ols(formula=formula, data=df).fit().resid

smf.ols(formula="Y_resid ~ D_resid", data=df_resid).fit().params[1]
print(f"Estimated effect: {stat:5.3f}")

Estimated effect: 0.924

We will now look at two datasets that are observationally equivalent but regression adjustment for observable 𝑋 does
only work in one of them.
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Note
• The naive estimates will be identical as the observed values 𝑦𝑖 and 𝑑𝑖 are the same.

[40]: for sample in range(2):

df = get_sample_regression_adjustment(sample)
print("Sample {:}\n".format(sample))

stat = (df["Y_1"] - df["Y_0"]).mean()
print("True effect: {:5.4f}".format(stat))

stat = df.query("D == 1")["Y"].mean() - df.query("D == 0")["Y"].mean()
print("Naive estimate: {:5.4f}".format(stat))

rslt = smf.ols(formula="Y ~ D", data=df).fit()
print(rslt.summary())

Sample 0

True effect: 10.0000
Naive estimate: 11.6540

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.860
Model: OLS Adj. R-squared: 0.860

(continues on next page)
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(continued from previous page)

Method: Least Squares F-statistic: 6113.
Date: Tue, 26 May 2020 Prob (F-statistic): 0.00
Time: 11:44:40 Log-Likelihood: -2275.1
No. Observations: 1000 AIC: 4554.
Df Residuals: 998 BIC: 4564.
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 6.8379 0.105 65.272 0.000 6.632 7.044
D 11.6540 0.149 78.187 0.000 11.361 11.946
==============================================================================
Omnibus: 7278.240 Durbin-Watson: 1.966
Prob(Omnibus): 0.000 Jarque-Bera (JB): 94.873
Skew: -0.097 Prob(JB): 2.50e-21
Kurtosis: 1.504 Cond. No. 2.60
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
Sample 1

True effect: 9.6280
Naive estimate: 11.6540

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.860
Model: OLS Adj. R-squared: 0.860
Method: Least Squares F-statistic: 6113.
Date: Tue, 26 May 2020 Prob (F-statistic): 0.00
Time: 11:44:42 Log-Likelihood: -2275.1
No. Observations: 1000 AIC: 4554.
Df Residuals: 998 BIC: 4564.
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 6.8379 0.105 65.272 0.000 6.632 7.044
D 11.6540 0.149 78.187 0.000 11.361 11.946
==============================================================================
Omnibus: 7278.240 Durbin-Watson: 1.966
Prob(Omnibus): 0.000 Jarque-Bera (JB): 94.873
Skew: -0.097 Prob(JB): 2.50e-21
Kurtosis: 1.504 Cond. No. 2.60
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
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Now we condition on 𝑋 to see where conditioning might help in obtaining an unbiased estimate of the true effect. Note
that the treatment effect (𝑦1𝑖 − 𝑦0𝑖 ) is uncorrelated with 𝑑𝑖 within each strata of 𝑋 in the first example. That is not true
in the second example.

[39]: for sample in range(2):

df = get_sample_regression_adjustment(sample)
print("Sample {:}\n".format(sample))

stat = (df["Y_1"] - df["Y_0"]).mean()
print(f"True effect:{stat:24.4f}")

stat = df.query("D == 1")["Y"].mean() - df.query("D == 0")["Y"].mean()
print(f"Naive estimate:{stat:21.4f}")

rslt = smf.ols(formula="Y ~ D + X", data=df).fit()
print(f"Conditional estimate:{rslt.params[1]:15.4f}\n")

Sample 0

True effect: 10.0000
Naive estimate: 11.6540
Conditional estimate: 10.0000

(continues on next page)
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Sample 1

True effect: 9.6280
Naive estimate: 11.6540
Conditional estimate: 10.0000

To summarize: Regression adjustment by 𝑋 will yield a consistent and unbiased estimate of the ATE when:

• 𝐷 is mean independent of (and therefore uncorrelated with) 𝑣0 + 𝐷(𝑣1 − 𝑣0) for each subset of respondent
identified by distinct values on the variables in 𝑋

• the causal effect of 𝐷 does not vary with 𝑋

• a fully flexible parameterization of 𝑋 is used

Freedman’s paradox

Let’s explore some of the challenges of finding the right regression specification.

In statistical analysis, Freedman’s paradox (Freedman, 1983), named after David Freedman, is a problem
in model selection whereby predictor variables with no relationship to the dependent variable can pass
tests of significance – both individually via a t-test, and jointly via an F-test for the significance of the
regression. (Wikipedia)

We fill a dataframe with random numbers. Thus there is no causal relationship between the dependent and independent
variables.

[33]: columns = ["Y"]
[columns.append("X{:}".format(i)) for i in range(50)]
df = pd.DataFrame(np.random.normal(size=(100, 51)), columns=columns)

Now we run a simple regression of the random independent variables on the dependent variable.

[34]: formula = "Y ~ " + " + ".join(columns[1:])
rslt = smf.ols(formula=formula, data=df).fit()
rslt.summary()

[34]: <class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.545
Model: OLS Adj. R-squared: 0.081
Method: Least Squares F-statistic: 1.176
Date: Tue, 26 May 2020 Prob (F-statistic): 0.286
Time: 11:32:24 Log-Likelihood: -108.43
No. Observations: 100 AIC: 318.9
Df Residuals: 49 BIC: 451.7
Df Model: 50
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------

(continues on next page)
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Intercept 0.1106 0.136 0.811 0.421 -0.163 0.384
X0 -0.0922 0.222 -0.416 0.679 -0.538 0.353
X1 -0.1713 0.141 -1.217 0.229 -0.454 0.111
X2 -0.0741 0.155 -0.478 0.635 -0.386 0.237
X3 0.1575 0.134 1.178 0.244 -0.111 0.426
X4 0.2736 0.172 1.595 0.117 -0.071 0.618
X5 -0.0649 0.172 -0.378 0.707 -0.410 0.280
X6 0.0063 0.141 0.045 0.964 -0.276 0.289
X7 0.1089 0.141 0.774 0.443 -0.174 0.392
X8 0.0694 0.139 0.500 0.619 -0.210 0.348
X9 0.3075 0.149 2.059 0.045 0.007 0.608
X10 0.0189 0.168 0.113 0.911 -0.318 0.356
X11 -0.2898 0.178 -1.626 0.110 -0.648 0.068
X12 0.0207 0.129 0.160 0.873 -0.239 0.280
X13 0.0901 0.119 0.757 0.453 -0.149 0.329
X14 -0.1296 0.154 -0.843 0.403 -0.439 0.179
X15 0.0618 0.153 0.405 0.687 -0.245 0.368
X16 -0.1151 0.122 -0.944 0.350 -0.360 0.130
X17 0.1265 0.170 0.744 0.460 -0.215 0.468
X18 0.1578 0.140 1.129 0.264 -0.123 0.439
X19 -0.0752 0.157 -0.477 0.635 -0.392 0.241
X20 -0.1454 0.133 -1.097 0.278 -0.412 0.121
X21 0.1507 0.150 1.005 0.320 -0.151 0.452
X22 0.4160 0.133 3.123 0.003 0.148 0.684
X23 -0.1169 0.156 -0.750 0.457 -0.430 0.196
X24 -0.2271 0.165 -1.376 0.175 -0.559 0.104
X25 0.1651 0.172 0.962 0.341 -0.180 0.510
X26 0.1461 0.123 1.192 0.239 -0.100 0.392
X27 -0.2343 0.139 -1.685 0.098 -0.514 0.045
X28 0.0508 0.138 0.368 0.715 -0.227 0.329
X29 -0.0187 0.191 -0.098 0.922 -0.403 0.365
X30 0.2245 0.149 1.511 0.137 -0.074 0.523
X31 0.0353 0.146 0.242 0.810 -0.258 0.329
X32 0.0666 0.152 0.438 0.663 -0.239 0.372
X33 -0.0281 0.151 -0.186 0.853 -0.331 0.275
X34 0.0204 0.141 0.144 0.886 -0.263 0.304
X35 -0.1940 0.138 -1.409 0.165 -0.471 0.083
X36 0.1215 0.144 0.843 0.403 -0.168 0.411
X37 0.3450 0.171 2.023 0.049 0.002 0.688
X38 0.2652 0.148 1.787 0.080 -0.033 0.563
X39 0.0370 0.167 0.221 0.826 -0.299 0.373
X40 -0.0072 0.147 -0.049 0.961 -0.302 0.288
X41 0.2258 0.154 1.469 0.148 -0.083 0.535
X42 -0.1910 0.154 -1.242 0.220 -0.500 0.118
X43 0.1973 0.139 1.423 0.161 -0.081 0.476
X44 -0.1017 0.136 -0.750 0.457 -0.374 0.171
X45 -0.1656 0.137 -1.210 0.232 -0.441 0.109
X46 -0.0255 0.152 -0.168 0.867 -0.330 0.279
X47 0.1621 0.148 1.094 0.279 -0.136 0.460
X48 0.1768 0.144 1.228 0.225 -0.113 0.466
X49 0.1961 0.146 1.345 0.185 -0.097 0.489
==============================================================================

(continues on next page)
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Omnibus: 0.122 Durbin-Watson: 2.167
Prob(Omnibus): 0.941 Jarque-Bera (JB): 0.302
Skew: -0.007 Prob(JB): 0.860
Kurtosis: 2.731 Cond. No. 6.59
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
"""

We use this to inform a second regression where we only keep the variables that were significant at the 25% level.

[14]: final_covariates = list()
for label in rslt.params.keys():

if rslt.pvalues[label] > 0.25:
continue

final_covariates.append(label)

formula = "Y ~ " + " + ".join(final_covariates)
rslt = smf.ols(formula=formula, data=df).fit()
rslt.summary()

[14]: <class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.402
Model: OLS Adj. R-squared: 0.260
Method: Least Squares F-statistic: 2.834
Date: Tue, 26 May 2020 Prob (F-statistic): 0.000627
Time: 07:19:03 Log-Likelihood: -122.11
No. Observations: 100 AIC: 284.2
Df Residuals: 80 BIC: 336.3
Df Model: 19
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.0853 0.103 0.832 0.408 -0.119 0.289
X1 -0.0874 0.099 -0.879 0.382 -0.285 0.111
X3 0.1712 0.101 1.698 0.093 -0.029 0.372
X4 0.1905 0.111 1.710 0.091 -0.031 0.412
X9 0.2888 0.104 2.768 0.007 0.081 0.496
X11 -0.2161 0.119 -1.812 0.074 -0.453 0.021
X22 0.3742 0.100 3.735 0.000 0.175 0.574
X24 -0.2796 0.103 -2.716 0.008 -0.484 -0.075
X26 0.1391 0.094 1.484 0.142 -0.047 0.326
X27 -0.2348 0.103 -2.283 0.025 -0.439 -0.030
X30 0.1220 0.110 1.109 0.271 -0.097 0.341
X35 -0.1628 0.093 -1.742 0.085 -0.349 0.023
X37 0.2214 0.100 2.206 0.030 0.022 0.421
X38 0.2400 0.106 2.267 0.026 0.029 0.451

(continues on next page)
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X41 0.0482 0.102 0.471 0.639 -0.155 0.252
X42 -0.1669 0.113 -1.478 0.143 -0.392 0.058
X43 0.1723 0.096 1.786 0.078 -0.020 0.364
X45 -0.1853 0.101 -1.838 0.070 -0.386 0.015
X48 0.1667 0.092 1.811 0.074 -0.016 0.350
X49 0.1491 0.100 1.492 0.140 -0.050 0.348
==============================================================================
Omnibus: 2.282 Durbin-Watson: 2.259
Prob(Omnibus): 0.319 Jarque-Bera (JB): 1.718
Skew: 0.137 Prob(JB): 0.424
Kurtosis: 2.420 Cond. No. 2.43
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
"""

What to make of this exercise?

[15]: np.random.seed(213)

df = pd.DataFrame(columns=["F-statistic", "Regressors"])
for i in range(100):

model = run_freedman_exercise()
df["Regressors"].loc[i] = len(model.params)
df["F-statistic"].loc[i] = model.f_pvalue

[16]: plot_freedman_exercise(df)
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1.8 Heterogeneity, selection, and causal graphs

We revisit the issues of treatment effect heterogeneity and individuals’ selecting their treatment status based on gains
unobserved by the econometrician. We lay the groundwork to estimate causal effects using instrumental variables,
front-door identification with causal mechanisms, and conditioning estimators using pretreatment variables. We work
through an elaborate panel data demonstration that illustrates the shortcoming of conditioning estimators in the presence
of self-selection.

1.8.1 Self-selection, heterogeneity, and causal graphs

Introduction

Alternatives to back-door identification
The next chapters deal with:

• instrumental variables

• front-door identification with causal mechanisms

• conditioning estimators using pretreatment variables

Why do we need to consider alternatives?

→selection on unobservables / nonignorability of treatment

What makes an unobservable?

• simple confounding, stable unobserved common cause of treatment and outcome variable

• subtle confounding, direct self-selection into the treatment based on accurate perceptions of the individual level
treatment effect

Selection on unobservables as a combination of two features:

• treatment effect heterogeneity

• self-selection
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Nonignorability and selection on the unobservables

Selection on observables

Selection on unobservables

Selection on the unobservables and the utility of additional posttreatment measures of the outcome

Catholic school example
• claim that Catholic schools are more effective than public schools in teaching mathematics and reading to equiv-

alent High School students.

• conditioning on family background and motivation to learn

• those enrolling into Catholic school have the most to gain from doing so

Notation
• 𝑌10, observed score on standardized achievement test given in tenth grade

• 𝐷 causal variable taking value one if student attends Catholic school

• 𝑈 unobserved motivation to learn, differences in home environment, anticipation of causal effect itself

• 𝑋 determinants of achievement tests that have no direct causal effect on school sector or selection

• 𝑂 ultimate background variables that affect all other variables in graph

We proceed in two steps:

• assess identification for given directed graphs

• examine structure of directed graph itself
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We cannot identify the causal effect of 𝐷 on 𝑌10 in subfigure (a) but in subfigure (b). However, at what cost?

𝑌10 blocks all back-door paths, however it does not satisfy the Condition 2 of the back-door criterion. As such, it adjusts
away some of the total causal effect of 𝐷 on 𝑌12.

Let 𝐸 denote an student’s ability for test taking and allow for the direct effect of 𝑈 on bow both achievement scores.
Then maybe this is a more complete picture?

Back-door adjustment by 𝑌10 ineffective again after revisiting economic implications of the imposed graph. In fact,
𝑌10 is now a collider variable that induces a noncausal dependence.

Panel Data Demonstration

The motivation behind this example is simply to show that we cannot learn anything about the underlying causal effect
with the conventional strategies and how we model self-selection in the data generating process.

[2]: def get_propensity_score(o, u):
"""Get the propensity score."""
level = -3.8 + o + u
return np.exp(level) / (1 + np.exp(level))

def get_treatment_status(o, u):
"""Sampling treatment status"""
# Following the causal graph, the treatment indicator is only a function
# of the background characteristics O and the unobservable U.
p = get_propensity_score(o, u)
return np.random.choice([1, 0], p=[p, 1 - p])

(continues on next page)
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def get_covariates():
"""Get covariates."""
o, e = np.random.normal(size=2)
x, u = o + np.random.normal(size=2)
return o, u, x, e

[3]: def get_potential_outcomes(grade, o, x, e, u, scenario=0, selection=False):
"""Get potential outcomes.

Sampling of potential outcome of an individual for the panel data demonstration.

Args:
grade: an integer for the grade the individual is in.
o, x, e : floats of observable characteristics.
u: a float of unobservable characteristic.
scenario: an integer for the scenario: (0) no role for E, (1) role for E.
selection: a boolean indicating whether there is selection on unobservables.

Returns:
A tuple of potential outcomes (Y_0, Y_1).

"""
# We want to make sure we only pass in valid input.
assert scenario in range(2)
assert selection in [True, False]
assert grade in [10, 11, 12]

# There is a natural progression in test scores.
level = dict()
level[10] = 100
level[11] = 101
level[12] = 102

if scenario == 0:
y_0 = level[grade] + o + u + x + np.random.normal()

elif scenario == 1:
y_0 = level[grade] + o + u + x + e + np.random.normal()

else:
raise NotImplementedError

# Sampling of treatment effects. The key difference for selection on unobservables␣
→˓is in how
# the overall treatment effect depends on the unobservable U that also affects the␣

→˓choice
# probability. This was the major criticism of Coleman's work.
delta_1 = np.random.normal(loc=10, scale=1)
if selection:

delta_2 = np.random.normal(loc=u)
else:

delta_2 = np.random.normal()

(continues on next page)
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if grade == 10:
y_1 = y_0 + delta_1 + delta_2

elif grade == 11:
y_1 = y_0 + (1 + delta_1) + delta_2

elif grade == 12:
y_1 = y_0 + (2 + delta_1) + delta_2

return y_0, y_1

[4]: def get_sample_panel_demonstration(num_agents=1000, scenario=0, selection=False,␣
→˓seed=123):
"""Get sample for demonstration.

Create a random sample for the demonstration of the usefulness of (or lack thereof)␣
→˓of having
additional posttreatment measures of the outcome.

Args:
num_agents: an integer for the number of agents in the sample
scenario: an integer that indicates whether to include E as a determinant of␣

→˓test scores
selection: a boolean variable indicating whether selection on unobservables is␣

→˓an issue
seed: an integer setting the random seed

Returns:
A dataframe with the simulated sample.

"""
# We first initialize an empty DataFrame that holds the information for each␣

→˓individual
# and each time period.
columns = ["Y", "D", "O", "X", "E", "U", "Y_1", "Y_0"]
index = product(range(num_agents), [10, 11, 12])
index = pd.MultiIndex.from_tuples(index, names=("Identifier", "Grade"))
df = pd.DataFrame(columns=columns, index=index)

# Now we are ready to simulate the sample with the desired characteristics.
np.random.seed(seed)
for i in range(num_agents):

o, u, x, e = get_covariates()
d = get_treatment_status(o, u)
for grade in [10, 11, 12]:

y_0, y_1 = get_potential_outcomes(grade, o, x, e, u, scenario, selection)
y = d * y_1 + (1 - d) * y_0
df.loc[(i, grade), :] = [y, d, o, x, e, u, y_1, y_0]

# Finally some type definitions for pretty output.
df = df.astype(np.float)
df = df.astype({"D": np.int})

(continues on next page)
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return df

[5]: num_agents, scenario, selection = 1000, 0, False
df = get_sample_panel_demonstration(num_agents, scenario, selection)
df.head()

/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓36: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To␣
→˓silence this warning, use `float` by itself. Doing this will not modify any behavior␣
→˓and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations
/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓37: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To␣
→˓silence this warning, use `int` by itself. Doing this will not modify any behavior and␣
→˓is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to␣
→˓specify the precision. If you wish to review your current use, check the release note␣
→˓link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations

[5]: Y D O X E U \
Identifier Grade
0 10 95.841898 0 -1.085631 -0.802652 0.997345 -2.591925

11 98.499140 0 -1.085631 -0.802652 0.997345 -2.591925
12 97.072351 0 -1.085631 -0.802652 0.997345 -2.591925

1 10 97.544210 0 -0.619191 -0.042445 -0.769433 -0.492665
11 100.583068 0 -0.619191 -0.042445 -0.769433 -0.492665

Y_1 Y_0
Identifier Grade
0 10 105.586179 95.841898

11 106.765876 98.499140
12 110.597380 97.072351

1 10 108.934451 97.544210
11 112.137966 100.583068

What is the average treatment effect and how does it depend on the presence of selection?

[6]: num_agents, scenario = 1000, 0

# This setup allows to freeze some arguments of the function
# that do not change during the analysis.
from functools import partial # noqa: E402

simulate_sample = partial(get_sample_panel_demonstration, num_agents, scenario)

for selection in [False, True]:
print(f" Selection {selection}")
df = simulate_sample(selection)
for grade in [10, 12]:

df_grade = df.loc[(slice(None), grade), :]
stat = (df_grade["Y_1"] - df_grade["Y_0"]).mean()

(continues on next page)
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print(f" Grade {grade}: ATE {stat:5.3f}")
print("\n")

Selection False

/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓36: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To␣
→˓silence this warning, use `float` by itself. Doing this will not modify any behavior␣
→˓and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations
/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓37: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To␣
→˓silence this warning, use `int` by itself. Doing this will not modify any behavior and␣
→˓is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to␣
→˓specify the precision. If you wish to review your current use, check the release note␣
→˓link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations

Grade 10: ATE 10.090
Grade 12: ATE 12.014

Selection True
Grade 10: ATE 10.116
Grade 12: ATE 12.039

The average treatment effects are unaffected by selection. But how does the picture change when we look at subsets of
the population?

[7]: for selection in [False, True]:
print(f" Selection {selection}")
df = simulate_sample(selection)
for grade in [10, 12]:

subset = df.loc[(slice(None), grade), :]

stat = list()
for status in range(2):

df_status = subset.query(f"D == {status}")
stat.append((df_status["Y_1"] - df_status["Y_0"]).mean())

print(" Grade {:}: ATC {:7.3f} ATT {:7.3f}".format(grade, *stat))
print("\n")

Selection False

/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓36: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To␣
→˓silence this warning, use `float` by itself. Doing this will not modify any behavior␣
→˓and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations

(continues on next page)
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/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓37: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To␣
→˓silence this warning, use `int` by itself. Doing this will not modify any behavior and␣
→˓is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to␣
→˓specify the precision. If you wish to review your current use, check the release note␣
→˓link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations

Grade 10: ATC 10.098 ATT 10.012
Grade 12: ATC 12.001 ATT 12.134

Selection True
Grade 10: ATC 9.958 ATT 11.655
Grade 12: ATC 11.861 ATT 13.776

/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓36: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To␣
→˓silence this warning, use `float` by itself. Doing this will not modify any behavior␣
→˓and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations
/home/sebastian/anaconda3/envs/grmpy/lib/python3.7/site-packages/ipykernel_launcher.py:
→˓37: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To␣
→˓silence this warning, use `int` by itself. Doing this will not modify any behavior and␣
→˓is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to␣
→˓specify the precision. If you wish to review your current use, check the release note␣
→˓link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/
→˓release/1.20.0-notes.html#deprecations

[8]: for grade in [10, 12]:
for model in ["Y ~ D", "Y ~ D + X + O"]:

df_grade = df.loc[(slice(None), grade), :]
rslt = smf.ols(formula=model, data=df_grade).fit()
stat = rslt.params["D"]
print("Grade: {} Model: {:}".format(*[grade, model]))
print(" Estimated Treatment Effect: {:5.3f}\n".format(stat))

Grade: 10 Model: Y ~ D
Estimated Treatment Effect: 15.767

Grade: 10 Model: Y ~ D + X + O
Estimated Treatment Effect: 12.181

Grade: 12 Model: Y ~ D
Estimated Treatment Effect: 17.849

Grade: 12 Model: Y ~ D + X + O
Estimated Treatment Effect: 14.331

(continues on next page)
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None of the estimates come even close to our parameters of interest.

Causal graphs for complex patterns of self-selection

We want to make sure that complex patterns of self-selection can be represented by directed graphs.

Separate graphs for separate latent classes

Groups
• 𝐺 = 1, selection of schools mainly for lifestyle reasons, proximity to home and taste for school cultures

• 𝐺 = 2, selection of schools to maximize expected achievement

What are the economic mechanisms are represented by each of the arrows? Why would we expect them to differ across
the two groups?

• families of the second group are more likely to send their children to charter schools 𝑑2 > 𝑑1

• parents with higher levels of education are more likely to send their children to charter schools as they value
distinctive forms of education 𝛼1, 𝛼2 > 0 and are able to support their children with their homework 𝛽1, 𝛽2 > 0.

• existing research suggests 𝛿1, 𝛿2 > 0 and 𝛿2 > 𝛿1 as families in second group put more effort in matching their
children to schools

What happens if we block the back-door path by conditioning in 𝑃 but ignore the existence of two latent classes? If
𝑃 is associated with latent class membership, then we do not properly weigh the stratum-specific treatment effects as
there is heterogeneity within strata.

A single graph that represents all latent classes

We now let 𝐺 capture effect heterogeneity.
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We outline more and more elaborate ideas about the economic mechanisms that determine class membership and how
they modify the structure of the causal graph.

• no arrow from :math:`P` to :math:`G` implies that students with students who have higher levels of education
are no more likely to know of the educational policy dialogue hat claims that charter schools have advantages.

• no arrow from :math:`G` to :math:`Y` implies that there is in fact (on average) no treatment effect heterogene-
ity.

Self-selection into the latent class

We now elaborate on the mechanism that determines class membership. We assume that 𝐺 is at least in part determined
by a variable that measures a family’s subjective expectations of their child’s likely benefit from attending a charter
school instead of a regular school.

However, these expectations are potentially based on access to information that is often related to parental background.
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1.9 Instrumental variables

We review basic instrumental variables estimation using a simulated example inspired by random assignment of school
vouchers. We look at the Wald and 2SLS estimator and discuss its interpretation as a Local Average Treatment Effect
in the presence of treatment effect heterogeneity. We conclude with a discussion of seminal papers in the literature and
also elevate a more critical assessment to discussion.

1.9.1 Instrumental variable estimators of causal effects

Overview
• Causal effect estimation with a binary IV

• Traditional IV estimators

• Instrumental variable estimators in the presence of individual-level heterogeneity

• Conclusions

Causal effect estimation with a binary IV

We consider the standard relationship

𝑌 = 𝛼 + 𝛿𝐷 + 𝜖,

where 𝛿 is the true causal effect that (for now) is assumed to be constant.

• No conditioning estimator would effectively estimate the causal effect of 𝐷 on 𝑌 because no observed variable
satisfy the back-door criterion.

• If perfect stratification cannot be be enacted with the available data, one possible solution is to find an exogenous
source of variation that determines 𝑌 only by way of the causal variable 𝐷. The causal effect is then estimated by
measuring how much 𝑌 varies with the proportion of the total variation in 𝐷 that is attributable to the exogenous
variation.

𝐸[𝑌 ] = 𝐸[𝛼 + 𝛿𝐷 + 𝜖] = 𝛼 + 𝛿𝐸[𝐷] + 𝐸[𝜖]

We can rewrite this as a difference equation in 𝑍:

𝐸[𝑌 | 𝑍 = 1]− 𝐸[𝑌 | 𝑍 = 0] = 𝛿(𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0]) + (𝐸[𝜖 | 𝑍 = 1]− 𝐸[𝜖 | 𝑍 = 0])
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Then we divide both sides by 𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0].

𝐸[𝑌 | 𝑍 = 1]− 𝐸[𝑌 | 𝑍 = 0]

𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0]
=

𝛿(𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0]) + (𝐸[𝜖 | 𝑍 = 1]− 𝐸[𝜖 | 𝑍 = 0])

𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0]

If Figure 9.1 (a) is an accurate description of the causal structure, then 𝐸[𝜖 | 𝑍 = 1] = 𝐸[𝜖 | 𝑍 = 0] = 0.

𝐸[𝑌 | 𝑍 = 1]− 𝐸[𝑌 | 𝑍 = 0]

𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0]
= 𝛿

𝛿𝐼𝑉,𝑊𝐴𝐿𝐷 =
𝐸[𝑌 | 𝑍 = 1]− 𝐸[𝑌 | 𝑍 = 0]

𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0]

• The assumption that 𝛿 is an invariant structural effect is crucial for this result.

Demonstration dataset

We wish to determine whether private high school outperform public high schools as measured by 9𝑡ℎ grade achieve-
ment tests. There exists a school voucher program in the city that covers tuition in case one attends private school.
However, there are budgetary limits and so the vouchers are available only to 10% of students and allocated by a
lottery.

• Winning the lottery increases private school attendance.

[2]: def get_sample_iv_demonstration():
"""Simulates sample.

Simulates a sample of 10,000 individuals for the IV demonstration
based on the information provided in our textbook.

Notes:

The school administration distributed 1,000 vouchers for
private school attendance in order to shift students
from public into private school. The goals is to increase
educational achievement.

Args:
None

(continues on next page)
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Returns:
A pandas Dataframe with the observable characteristics (Y, D, Z)
for all individuals.

Y: standardized test for 9th graders
D: private school attendance
Z: voucher available

"""
# We first initialize an empty Dataframe with 10,000 rowns and three
# columns.
columns = ["Y", "D", "Z"]
index = pd.Index(range(10000), name="Identifier")
df = pd.DataFrame(columns=columns, index=index)

# We sample the exact number of individuals following the description
# in Table 9.2.
for i in range(10000):

if i < 8000:
y, d, z = np.random.normal(50), 0, 0

elif i < 9000:
y, d, z = np.random.normal(60), 1, 0

elif i < 9800:
y, d, z = np.random.normal(50), 0, 1

else:
# The lower mean for the observed outcome does indicate
# that those drawn into treatment due to the instrument
# only do have smaller gains compared to those that
# take the treatment regardless.
y, d, z = np.random.normal(58), 1, 1

df.loc[i, :] = [y, d, z]

# We shuffle all rows so we do not have the different subsamples
# grouped together.
df = df.sample(frac=1).reset_index(drop=True)

# We set the types of our columns for prettier formatting later.
df = df.astype(np.float)
df = df.astype({"D": np.int, "Z": np.int})

return df

Let’s have a look at the structure of the data.

[3]: df = get_sample_iv_demonstration()
df.head()

[3]: Y D Z
0 48.606920 0 0
1 50.240003 0 0
2 49.377337 0 0
3 60.885880 1 0

(continues on next page)
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(continued from previous page)

4 50.160785 0 0

How about the conditional distribution of observed outcomes?

[4]: df.groupby(["D", "Z"])["Y"].mean()

[4]: D Z
0 0 50.009760

1 49.962199
1 0 60.034692

1 58.072959
Name: Y, dtype: float64

We can always run an OLS regression first to get a rough sense of the data.

[5]: rslt = smf.ols(formula="Y ~ D", data=df).fit()
rslt.summary()

[5]: <class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.904
Model: OLS Adj. R-squared: 0.904
Method: Least Squares F-statistic: 9.374e+04
Date: Wed, 16 Jun 2021 Prob (F-statistic): 0.00
Time: 08:40:03 Log-Likelihood: -14482.
No. Observations: 10000 AIC: 2.897e+04
Df Residuals: 9998 BIC: 2.898e+04
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 50.0054 0.011 4555.317 0.000 49.984 50.027
D 9.7023 0.032 306.173 0.000 9.640 9.764
==============================================================================
Omnibus: 12.957 Durbin-Watson: 2.022
Prob(Omnibus): 0.002 Jarque-Bera (JB): 13.196
Skew: -0.074 Prob(JB): 0.00136
Kurtosis: 3.100 Cond. No. 3.13
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
"""

However, to exploiting the structure of the dataset, we rather want to compute the IV estimate.

[6]: def get_wald_estimate(df):
"""Calculate Wald estimate.

Calculates the Wald estimate for the causal effect of treatment
(continues on next page)
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on an observed outcome using a binary instrument.

Args:
df: A pandas DataFrame

Returns:
A float with the estimated causal effect.

"""
# We compute the average difference in observed outcomes.
average_outcome = df.groupby("Z")["Y"].mean().to_dict()
numerator = average_outcome[1] - average_outcome[0]

# We compute the average difference in treatment uptake.
average_treatment = df.groupby("Z")["D"].mean().to_dict()
denominator = average_treatment[1] - average_treatment[0]

rslt = numerator / denominator

return rslt

So, let’s see.

[7]: rslt = get_wald_estimate(df)
print(" Wald estimate: {:5.3f}".format(rslt))

Wald estimate: 5.183

Traditional IV estimators

We now move beyond a binary instrument.

𝛿𝐼𝑉 ≡
𝐶𝑜𝑣𝑁 (𝑦𝑖, 𝑧𝑖)

𝐶𝑜𝑣𝑁 (𝑑𝑖, 𝑧𝑖)

Moving towards the population-level relationships:

𝐶𝑜𝑣(𝑌, 𝑍)

𝐶𝑜𝑣(𝐷,𝑍)
=

𝛿𝐶𝑜𝑣(𝐷,𝑍) + 𝐶𝑜𝑣[𝜖, 𝑍]

𝐶𝑜𝑣(𝐷,𝑍)

= 𝛿

So, this suggests that:

𝐶𝑜𝑣𝑁 (𝑦𝑖, 𝑧𝑖)

𝐶𝑜𝑣𝑁 (𝑑𝑖, 𝑧𝑖)

𝑝−→ 𝛿
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Returning to our simulated example, we can now apply the two-stage least squares (2SLS) estimator you are familiar
with.

[8]: df["D_pred"] = smf.ols(formula="D ~ Z", data=df).fit().predict()
smf.ols(formula="Y ~ D_pred", data=df).fit().summary()

[8]: <class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.002
Model: OLS Adj. R-squared: 0.002
Method: Least Squares F-statistic: 17.39
Date: Wed, 16 Jun 2021 Prob (F-statistic): 3.07e-05
Time: 08:40:03 Log-Likelihood: -26171.
No. Observations: 10000 AIC: 5.235e+04
Df Residuals: 9998 BIC: 5.236e+04
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 50.5478 0.153 330.860 0.000 50.248 50.847
D_pred 5.1830 1.243 4.170 0.000 2.747 7.619
==============================================================================
Omnibus: 3794.296 Durbin-Watson: 1.993
Prob(Omnibus): 0.000 Jarque-Bera (JB): 11127.197
Skew: 2.065 Prob(JB): 0.00
Kurtosis: 6.107 Cond. No. 38.0
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
"""

Given the structure of our example, both estimators are equivalent. As of now, statsmodels does not provide good
support for the instrumental variables estimation. That is true for a host of methods often used by economists. Often
linearmodels provides a viable alternative.
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[11]: from linearmodels import IV2SLS # noqa: E402

df["const"] = 1
IV2SLS(df["Y"], df["const"], df["D"], df["Z"]).fit()

[11]: IV-2SLS Estimation Summary
==============================================================================
Dep. Variable: Y R-squared: 0.7076
Estimator: IV-2SLS Adj. R-squared: 0.7075
No. Observations: 10000 F-statistic: 77.109
Date: Wed, Jun 16 2021 P-value (F-stat) 0.0000
Time: 08:43:00 Distribution: chi2(1)
Cov. Estimator: robust

Parameter Estimates
==============================================================================

Parameter Std. Err. T-stat P-value Lower CI Upper CI
------------------------------------------------------------------------------
const 50.548 0.0748 676.20 0.0000 50.401 50.694
D 5.1830 0.5902 8.7812 0.0000 4.0261 6.3398
==============================================================================

Endogenous: D
Instruments: Z
Robust Covariance (Heteroskedastic)
Debiased: False
IVResults, id: 0x7f19084a4d60

Instrumental variable estimators in the presence of individual-level heterogeneity

𝑌 = 𝑌 0 + 𝐷(𝑌 1 − 𝑌 0)

= 𝑌 0 + 𝛿𝐷

= 𝜇0 + 𝛿𝐷 + 𝜈0,

where 𝜇0 ≡ 𝐸[𝑌 0] and 𝜈0 ≡ 𝑌 0 − 𝐸[𝑌 0]. Here, 𝛿 now has a clear interpretation.

We need to add a four-category latent variable 𝐶:

Compliers (C = c) : 𝐷𝑍=0 = 0 and𝐷𝑍=1 = 1

Defiers (C = d) : 𝐷𝑍=0 = 1 and𝐷𝑍=1 = 0

Always takers (C = a) : 𝐷𝑍=0 = 1 and𝐷𝑍=1 = 1

Never takers (C = n) : 𝐷𝑍=0 = 0 and𝐷𝑍=1 = 0

Analogously to the definition of the observed outcome, 𝑌 , the observed treatment indicator variable 𝐷 can then be
defined as

𝐷 = 𝐷𝑍=0 + (𝐷𝑍=1 −𝐷𝑍=0)𝑍

= 𝐷𝑍=0 + 𝜅𝑍

What is the value of 𝜅 for the different latent groups?

Identifying assumptions for the Local Average Treatment Effect
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• Independence, (𝑌 1, 𝑌 0, 𝐷𝑍=1, 𝐷𝑍=0) ⊥⊥ 𝑍

• Nonzero effect of instrument, 𝜅 ̸= 0 for at least some 𝑖

• Monotonicty assumption, either 𝜅 ≥ 0 for all 𝑖 or 𝜅 ≤ 0 for all 𝑖

If these assumptions are valid, then an instrument 𝑍 identifies the 𝐿𝐴𝑇𝐸: the average treatment effect for the subset
of the population whose treatment selection is induced by the treatment.

𝛿𝐼𝑉,𝑊𝐴𝐿𝐷
𝑝−→ 𝐸[𝛿 | 𝐶 = 𝑐]

What can we learn about the different latent groups?

• Monotonicity, there are no defiers

• Independence, the same distribution of never takes, always takers, and compliers is present among voucher groups

𝑃𝑟𝑁 [𝑑𝑖 = 1, 𝑧𝑖 = 0]

𝑃𝑟𝑁 [𝑧𝑖 = 0]

𝑝−→ 𝑃𝑟[𝐶 = 𝑎]

𝑃𝑟𝑁 [𝑑𝑖 = 0, 𝑧𝑖 = 1]

𝑃𝑟𝑁 [𝑧𝑖 = 1]

𝑝−→ 𝑃𝑟[𝐶 = 𝑛]

We also know 𝑃𝑟[𝐶 = 𝑑] = 0 and thus

1− 𝑃𝑟𝑁 [𝑑𝑖 = 1, 𝑧𝑖 = 0]

𝑃𝑟𝑁 [𝑧𝑖 = 0]
− 𝑃𝑟𝑁 [𝑑𝑖 = 0, 𝑧𝑖 = 1]

𝑃𝑟𝑁 [𝑧𝑖 = 1]

𝑝−→ 𝑃𝑟[𝐶 = 𝑐]
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How can we learn about the LATE from the information analyzed so far?

𝐸[𝛿 | 𝐶 = 𝑐] = 𝐸[𝑌 1 − 𝑌 0 | 𝐶 = 𝑐]

Let’s start with the following:

𝐸[𝑌 | 𝐷 = 1, 𝑍 = 1] =
𝑃𝑟[𝐶 = 𝑐]

𝑃𝑟[𝐶 = 𝑐] + 𝑃𝑟[𝐶 = 𝑎]
𝐸[𝑌 1 | 𝐶 = 𝑐]

+
𝑃𝑟[𝐶 = 𝑎]

𝑃𝑟[𝐶 = 𝑐] + 𝑃𝑟[𝐶 = 𝑎]
𝐸[𝑌 1 | 𝐶 = 𝑎]

𝐸[𝑌 | 𝐷 = 0, 𝑍 = 0] =
𝑃𝑟[𝐶 = 𝑐]

𝑃𝑟[𝐶 = 𝑐] + 𝑃𝑟[𝐶 = 𝑛]
𝐸[𝑌 0 | 𝐶 = 𝑐]

+
𝑃𝑟[𝐶 = 𝑛]

𝑃𝑟[𝐶 = 𝑐] + 𝑃𝑟[𝐶 = 𝑛]
𝐸[𝑌 0 | 𝐶 = 𝑛]

Note that we can consistent estimates for 𝐸[𝑌 0 | 𝐶 = 𝑛] and 𝐸[𝑌 1 | 𝐶 = 𝑎] are provided in the table directly.

Now lets tie this back to the Wald estimator:

𝛿𝐼𝑉,𝑊𝐴𝐿𝐷 =
𝐸[𝑌 | 𝑍 = 1]− 𝐸[𝑌 | 𝑍 = 0]

𝐸[𝐷 | 𝑍 = 1]− 𝐸[𝐷 | 𝑍 = 0]

[12]: get_shares_latent_groups()

[13]: get_outcome_latent_groups()
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Criticism

• instrument-dependent parameter

• limited policy-relevance

Discussion

We revisit and discuss the discussion of the LATE’s usefulness.
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We discuss Rosenzweig & Wolpin (2000) in more detail because it provides a small structural economic model of
schooling choice that allows to interpret the instrumental variable estimates of Angrist (1990) and Angrist & Krueger
(1991).

𝑎 age
𝑦𝑎 earnings at age a
𝑆 level of schooling attainment
𝑋𝑎 work experience at age 𝑎
𝜇 ability
𝑎𝑒 school entry age
𝑎𝜅 minimum age to leave school
𝑆0 = 𝑎𝜅 − 𝑎𝑒 minimum schooling
𝑐 direct cost of education

Wages are determined as follows:

ln 𝑦𝑎 = 𝑓(𝑆, 𝜇) + 𝑔(𝑋𝑎, 𝜇)

The authors assume that individuals work full-time after school and there is no uncertainty about wages. Individuals
decide whether to pursue one additional year of schooling after the mandatory minimum. If they do so 𝑠1 takes value
one and zero otherwise. So, the final level of schooling is 𝑆1 = 𝑆0 + 𝑠1. All individuals work 𝐴 periods in the labor
market. Spending one additional year in school does not reduce total time in the labor market. However, it results in
entering the labor market one year later as schooling precludes working. Ability is the only source of heterogeneity
and distributed at random in the population.

The individual’s objective is to choose their final level of schooling such as to maximize their discounted lifetime
earnings under the two scenarios (𝑉1, 𝑉0).

𝑉1(𝑆1 = 1|𝑆0) = −𝑐 +
∑︀𝐴−1

𝑎=0 𝛽𝑎+1𝑦𝑎
= −𝑐 +

∑︀𝐴−1
𝑎=0 𝛽𝑎+1 exp(𝑓(𝑆0 + 1, 𝜇) + 𝑔(𝑎, 𝜇))

= −𝑐 +
∑︀𝐴−1

𝑎=0 𝛽𝑎+1 exp(𝑓(𝑆0 + 1, 𝜇)) exp(𝑔(𝑎, 𝜇))

= −𝑐 + exp(𝑓(𝑆0 + 1, 𝜇))
∑︀𝐴−1

𝑎=0 𝛽𝑎+1 exp(𝑔(𝑎, 𝜇))

𝑉1(𝑆1 = 0|𝑆0) =

𝐴−1∑︁
𝑎=0

𝛽𝑎𝑦𝑎

= exp(𝑓(𝑆0, 𝜇))

𝐴−1∑︁
𝑎=0

𝛽𝑎 exp(𝑔(𝑎, 𝜇))

We now turn attention to the decision rule 𝑉1 > 𝑉0 implies further pursuit of education.

−𝑐 + exp(𝑓(𝑆0 + 1, 𝜇)
∑︀𝐴−1

𝑎=0 𝛽𝑎+1 exp(𝑔(𝑎, 𝜇))

> exp(𝑓(𝑆0 + 1, 𝜇))
∑︀𝐴−1

𝑎=0 𝛽𝑎 exp(𝑔(𝑎, 𝜇)

−𝑐 + exp(𝑓(𝑆0 + 1, 𝜇)
∑︀𝐴−1

𝑎=0 𝛽𝑎+1 exp(𝑔(𝑎, 𝜇))

> exp(𝑓(𝑆0 + 1, 𝜇))

𝐴−1∑︁
𝑎=0

𝛽𝑎 exp(𝑔(𝑎, 𝜇)⏟  ⏞  
𝑉1(𝑆1=0|𝑆0)

now divide by 𝑉1(𝑆1 = 0|𝑆0)

exp(𝑓(𝑆0+1,𝜇))
exp(𝑓(𝑆0,𝜇))

𝛽 > 1 + 𝑐
𝑉1(𝑆1=0|𝑆0)

> (1 + 𝑐
𝑉1(𝑆1=0|𝑆0)

)(1 + 𝑟)

𝑓(𝑆0 + 1, 𝜇)− 𝑓(𝑆0, 𝜇) > 𝑟 + 𝑐
𝑉1(𝑆1=0|𝑆0)
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using ln(1 + 𝑥) ≈ 𝑥 for small 𝑥.

𝑠1 =

{︃
1 if 𝑓(𝑆0 + 1, 𝜇)− 𝑓(𝑆0, 𝜇) ≥ 𝑟 + ln

(︁
𝑐

𝑉1(𝑠1=0|𝑆0)
+ 1
)︁

0 otherwise

If ability increases the marginal schooling return, then there exists a unique cutoff value for ability 𝜇* such that indi-
viduals with ability above the cutoff continue schooling while those below do not.

𝜕𝑓(𝑆0 + 1, 𝜇)− 𝑓(𝑆0, 𝜇)

𝜕𝜇
> 0

Even if randomly assigned, optimizing behavior induces an association between schooling and ability. This generates
the ability bias. %

𝐸[𝑓(𝑆0 + 1, 𝜇) | 𝜇 > 𝜇*]− 𝐸[𝑓(𝑆0, 𝜇) | 𝜇 < 𝜇*] > 𝐸[𝑓(𝑆0 + 1, 𝜇)]− 𝐸[𝑓(𝑆0, 𝜇)]

We now turn to the development of the Wald estimator Wald (1940). So, we first derive expected earnings equation for
each age 𝑎.

𝐸[ln 𝑦𝑎] = 𝜋1[𝑓(𝑆0 + 1, 𝜇1) + 𝑔(𝑎− 𝑎𝜅 − 1, 𝜇1)] + (1− 𝜋1)[𝑓(𝑆0, 𝜇2) + 𝑔(𝑎− 𝑎𝜅, 𝜇2)]

We now consider the following scenario, where we reduce the school entry age by one year but keep the minimum
school leaving age unchanged. Type 1 achieve their optimal level of schooling exactly at the school leaving age. Type
2’s will be forced to attend school a year longer. %

𝐸[ln 𝑦𝑎] = 𝜋1[𝑓(𝑆0 + 1, 𝜇1) + 𝑔(𝑎− 𝑎𝜅, 𝜇1)] + (1− 𝜋1)[𝑓(𝑆0 + 1, 𝜇2) + 𝑔(𝑎− 𝑎𝜅, 𝜇2)]

The difference in expected (ln) earnings divided by the difference in expected schooling 0 · 𝜋1 + 1 · (1− 𝜋1), the Wald
estimator, is thus

𝐸[ln 𝑦𝑎| 𝑍 = 1⏟  ⏞  
reduced entry age

]− 𝐸[ln 𝑦𝑎|𝑍 = 0]

= 𝜋1(𝑓(𝑆0 + 1, 𝜇1) + 𝑔(𝑎− 𝑎𝜅, 𝜇1))
+(1− 𝜋1)(𝑓(𝑆0 + 1, 𝜇2) + 𝑔(𝑎− 𝑜𝜅, 𝜇2))
−𝜋1(𝑓(𝑆0 + 1, 𝜇1) + 𝑔(𝑎− 𝑎𝜅 − 1, 𝜇1))
−(1− 𝜋1)(𝑓(𝑆0, 𝜇2) + 𝑔(𝑎− 𝑜𝜅, 𝜇2))

= 𝜋1(𝑔(𝑎− 𝑎𝜅, 𝜇1)− 𝑔(𝑎− 𝑎𝜅 − 1, 𝜇1))
+(1− 𝜋1)(𝑓(𝑆0 + 1, 𝜇2)− 𝑓(𝑆0, 𝜇2))

divide by difference in schooling attainment

𝜋1 * 0 + (1− 𝜋1) * 1

∆𝐸(ln 𝑦𝑎)

∆𝑆
=

𝜋1

1− 𝜋1
[𝑔(𝑎− 𝑎𝜅, 𝜇1)− 𝑔(𝑎− 𝑎𝜅 − 1, 𝜇1)]⏟  ⏞  

type 1’s additional experience

+ [𝑓(𝑆0 + 1, 𝜇2)− 𝑓(𝑆0, 𝜇2)]⏟  ⏞  
effect of interest (compliers only)

,

where Δ𝐸(ln 𝑦𝑎)
Δ𝑆 corresponds to 𝐸(ln 𝑦𝑎 | 𝑍 = 1)−𝐸(ln 𝑦𝑎 | 𝑍 = 0) and 𝑍 takes value one under the reduced school

entry age and zero otherwise. Thus the estimate does not correspond directly to the effect of interest. However, Angrist
& Krueger (1991) make the point in Figure V that for the cohort they are looking at (𝑎 = 40, ..., 49) the effect of age
on earnings is negligible.
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1.10 Repeated observations

We now explore models in which we have multiple observations at different points in time. We start with the interrupted
time series model and then explore difference-in-difference estimation using Card & Krueger (1994). We then return to
the earlier example of school choice to benchmark the performance of alternative estimators as we vary the economics
of individual decision-making.

1.10.1 Repeated observations and the estimation of causal effects

Overview
• Interrupted time series models

• Regression discontinuity design

• Panel data

– Traditional adjustment strategies

– Model-based approaches
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Interrupted time series models (ITS)

𝑌𝑡 = 𝑓(𝑡) + 𝐷𝑡𝑏 + 𝑒𝑡

1. before the treatment is introduced (for 𝑡 ≤ 𝑡*), 𝐷𝑡 = 0 and 𝑌𝑡 = 𝑌 0
𝑡

2. after the treatment is in place (from 𝑡* through 𝑇 ), 𝐷𝑡 = 1 and 𝑌𝑡 = 𝑌 1
𝑡

The causal effect of the treatment is then 𝛿𝑡 = 𝑌 1
𝑡 −𝑌 0

𝑡 for time periods 𝑡* through 𝑇 . This is equal to 𝛿𝑡 = 𝑌𝑡−𝑌 0
𝑡 . The

crucial assumption is that the obseved values of 𝑦𝑡 before 𝑡* can be used to speciy 𝑓(𝑡) for all time periods, including
those after treatment.

Operation Ceasefire involved meetings with gang-involved youth who were engaged in gang conflict. Gang members
were offered educational, employment, and other social services if they committed to refraining from gang-related
deviance.

Strategies to strengthen ITS analysis
• Assess the effect of the cause on multiple outcomes that should be be affected by the cause.

• Assess the effect of the cause on outcomes that should not be affected by the cause.

• Assess the effect of the cause withing subgroups across which the causal effect should vary in predictable ways.

• Adjust for trends in other variables that may affect or be related to the underlying time series of interest.

• Assess the impact of the termination of th cause in addition to its initiation.
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Panel data

We now need to add a time dimension to our effect analysis, i.e. 𝑌 𝑑
𝑡 for 𝑑 = 0, 1.

Seminal paper
• Card and Krueger (1995, 2000)

We briefly discuss the exposition from Angrist & Pischke (2008).

We are interested in

𝐸[𝑌1
1 − 𝑌1

0|𝐷 = 1] = 𝐸[𝑌1
1|𝐷 = 1]− 𝐸[𝑌1

0|𝐷 = 1]⏟  ⏞  
counterfactual

assuming common trend

𝐸[𝑌1
0 − 𝑌0

0|𝐷 = 1] = 𝐸[𝑌1
0 − 𝑌0

0|𝐷 = 0]
𝐸[𝑌1

0|𝐷 = 1] = 𝐸[𝑌1
0 − 𝑌0

0|𝐷 = 0] + 𝐸[𝑌0
0|𝐷 = 1]

𝐸[𝑌1
1 − 𝑌1

0|𝐷 = 1] = 𝐸[𝑌1
1|𝐷 = 1]− 𝐸[𝑌1

0|𝐷 = 0] + 𝐸[𝑌0
0|𝐷 = 0]− 𝐸[𝑌0

0|𝐷 = 1]

moving to observed outcomes where T indicates period in conditioning set.

𝐸[𝑌1
1 − 𝑌1

0|𝐷 = 1] = 𝐸[𝑌 |𝐷 = 1, 𝑇 = 1]− 𝐸[𝑌 |𝐷 = 1, 𝑇 = 0]

− (𝐸[𝑌 |𝐷 = 0, 𝑇 = 1]− 𝐸[𝑌 |𝐷 = 0, 𝑇 = 0])()

We can now map these observed objects to Table 5.2.

𝐸[𝑌 |𝐷 = 1, 𝑇 = 1] = 21.03

𝐸[𝑌 |𝐷 = 1, 𝑇 = 0] = 20.44

𝐸[𝑌 |𝐷 = 0, 𝑇 = 1] = 21.17

𝐸[𝑌 |𝐷 = 0, 𝑇 = 0] = 23.33

Demonstration
We consider how alterantive estimators perform assuming a world where:

• no catholic elementary schools or middle schools exist

• all students consider entering either public or Cathlic high schools after end of eight grade

• pretretment achievement test score is available for the eights grade

difference-in-difference 𝑌𝑖10 − 𝑌𝑖8 = 𝑎 + 𝐷*
𝑖 𝑐 + 𝑒𝑖
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Control outcomes

𝑌 0
𝑖8 = 98 + 𝑂𝑖 + 𝑈𝑖 + 𝑋𝑖 + 𝐸𝑖 + 𝜈0𝑖8

𝑌 0
𝑖9 = 99 + 𝑂𝑖 + 𝑈𝑖 + 𝑋𝑖 + 𝐸𝑖 + 𝜈0𝑖9

𝑌 0
𝑖10 = 100 + 𝑂𝑖 + 𝑈𝑖 + 𝑋𝑖 + 𝐸𝑖 + 𝜈0𝑖10

There is a linear time trend for 𝑌 0
𝑖𝑡 but we will also consider a diverging trend scenario.

Treated outcomes

𝑌 1
𝑖9 = 𝑌 0

𝑖9 + 𝛿′𝑖 + 𝛿′′𝑖

𝑌 1
𝑖10 = 𝑌 0

𝑖10 + (1 + 𝛿′𝑖) + 𝛿′′𝑖

The treatment effect increases in time.

Treatment selection

baseline 𝑃𝑟[𝐷*
𝑖 = 1 | 𝑂𝑖, 𝑈𝑖] =

𝑒𝑥𝑝(−3.8 + 𝑂𝑖 + 𝑈𝑖)

1 + 𝑒𝑥𝑝(−3.8 + 𝑂𝑖 + 𝑈𝑖)

self-selection on gains 𝑃𝑟[𝐷*
𝑖 = 1 | 𝑂𝑖, 𝑈𝑖] =

𝑒𝑥𝑝(−7.3 + 𝑂𝑖 + 𝑈𝑖 + 5𝛿′′)

1 + 𝑒𝑥𝑝(−7.3 + 𝑂𝑖 + 𝑈𝑖 + 5𝛿′′)

self-selection on pretest 𝑃𝑟[𝐷*
𝑖 = 1 | 𝑂𝑖, 𝑈𝑖] =

𝑒𝑥𝑝(−7.3 + 𝑂𝑖 + 𝑈𝑖 + 𝑘(𝑌𝑖8 − 𝐸[𝑌𝑖8]))

1 + 𝑒𝑥𝑝(−7.3 + 𝑂𝑖 + 𝑈𝑖 + 𝑘(𝑌𝑖8 − 𝐸[𝑌𝑖8]))

Why is the average control outcome higher among the (eventually) treated?

[8]: num_agents, selection, trajectory = 10, "baseline", "parallel"
df = get_sample_panel_demonstration(num_agents, selection, trajectory)
df.groupby(["D_ever", "Grade"])["Y"].mean()

[8]: D_ever Grade
0 8 NaN

9 97.858309
10 98.398170

Name: Y, dtype: float64

How do our standard estimators perform in these setting?

[10]: for selection in [
"baseline",
"self-selection on gains",

(continues on next page)
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(continued from previous page)

"self-selection on pretest",
]:

for trajectory in ["parallel", "divergent"]:
print("\n Selection: {:}, Trajectory: {:}".format(selection, trajectory))
num_agents, selection, trajectory = 1000, selection, trajectory
df = get_sample_panel_demonstration(num_agents, selection, trajectory)
for estimator in ["naive", "diff"]:

rslt = get_panel_estimates(estimator, df)
print("{:10}: {:5.3f}".format(estimator, rslt.params["D"]))

Selection: baseline, Trajectory: parallel
naive : 15.278
diff : 9.416

Selection: baseline, Trajectory: divergent
naive : 15.363
diff : 9.774

Selection: self-selection on gains, Trajectory: parallel
naive : 14.151
diff : 11.358

Selection: self-selection on gains, Trajectory: divergent
naive : 15.986
diff : 12.460

Selection: self-selection on pretest, Trajectory: parallel
naive : 14.082
diff : 8.971

Selection: self-selection on pretest, Trajectory: divergent
naive : 16.011
diff : 10.543
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• Card, D. and Krueger, A. B. (2000). Minimum wages and employment: A case study of the fast-food industry
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1.11 Regression discontinuity design

We study regression discontinuity design in more detail. We discuss identification, issues in interpretation, and chal-
lenges to its application based on the seminal review by Lee & Lemieux (2010). We look at different conditional mean
functions and the issue of bandwidth choice. We reproduce and check the robustness of some of the results in Lee
(2008).

1.11.1 Regression discontinuity design

This following material is mostly based on the following review:

• Lee, D. S., and Lemieux, T. (2010). Regression discontinuity designs in economics. Journal of Economic
Literature, 48(2), 281–355.

The idea of the authors is to throughout contrast RDD to its alternatives. They initially just mention selected features
throughout the introduction but then also devote a whole section to it. This clearly is a core strength of the article. I hope
to maintain this focus in my lecture. Also, their main selling point for RDD as the close cousin to standard randomized
controlled trial is that the behavioral assumption of imprecise control about the assignment variable translates into the
statistical assumptions of a randomized experiment.

Original application
In the initial application of RD designs, Thistlethwaite & Campell (1960) analyzed the impact of merit rewards on future
academic outcomes. The awards were allocated based on the observed test score. The main idea behind the research
design was that individuals with scores just below the cutoff (who did not get the award) were good comparisons to
those just above the cutoff (who did receive the award).

Causal graph
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Intuition

Key points of RD design
• RD designs can be invalid if individuals can precisely manipulate the assignment variable - discontinuity rules

might generate incentives

• If individuals - even while having some influence - are unable to precisely manipulate the assignment variable, a
consequence of this is that the variation in treatment near the threshold is randomized as though from a random-
ized experiment - contrast to IV assumption

• RD designs can be analyzed - and tested - like randomized experiments.

• Graphical representation of an RD design is helpful and informative, but the visual presentation should not be
tilted toward either finding an effect or finding no effect.

• Nonparametric estimation does not represent a “solution” to functional form issues raised by RD designs. It is
therefore helpful to view it as a complement to - rather than a substitute for - parametric estimation.

• Goodness-of-fit and other statistical tests can help rule out overly restrictive specifications.

Baseline
A simple way to estimating the treatment effect 𝜏 is to run the following linear regression.

𝑌 = 𝛼 + 𝐷𝜏 + 𝑋𝛽 + 𝜖,

where 𝐷 ∈ [0, 1] and we have 𝐷 = 1 if 𝑋 ≥ 𝑐 and 𝐷 = 0 otherwise.

Baseline setup

• “all other factors” determining 𝑌 must be evolving “smoothly” (continously) with respect to 𝑋 .

• the estimate will depend on the functional form

Potential outcome framework
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Potential outcome framework
Suppose 𝐷 = 1 if 𝑋 ≥ 𝑐, and 𝐷 = 0 otherwise

⇒

{︃
𝐸(𝑌 | 𝑋 = 𝑐) = 𝐸(𝑌0 | 𝑋 = 𝑐) for 𝑋 < 𝑐

𝐸(𝑌 | 𝑋 = 𝑐) = 𝐸(𝑌1 | 𝑋 = 𝑐) for 𝑋 ≥ 𝑐

Suppose 𝐸(𝑌1 | 𝑋 = 𝑐), 𝐸(𝑌0 | 𝑋 = 𝑐) are continuous in 𝑥.

⇒

{︃
lim𝜖↘0 𝐸(𝑌0 | 𝑋 = 𝑐− 𝜖) = 𝐸(𝑌0 | 𝑋 = 𝑐)

lim𝜖↘0 𝐸(𝑌1 | 𝑋 = 𝑐 + 𝜖) = 𝐸(𝑌1 | 𝑋 = 𝑐)

lim
𝜖↘0

𝐸(𝑌 | 𝑋 = 𝑐 + 𝜖)− lim
𝜖↘0

𝐸(𝑌 | 𝑋 = 𝑐− 𝜖)

= lim
𝜖↘0

𝐸(𝑌1 | 𝑋 = 𝑐 + 𝜖)− lim
𝜖↘0

𝐸(𝑌0 | 𝑋 = 𝑐− 𝜖)

= 𝐸(𝑌1 | 𝑋 = 𝑐)− 𝐸(𝑌0 | 𝑋 = 𝑐)

= 𝐸(𝑌1 − 𝑌0 | 𝑋 = 𝑐)

⇒ average treatment effect at the cutoff

Sharp and Fuzzy design

[4]: grid = np.linspace(0, 1.0, num=1000)
for version in ["sharp", "fuzzy"]:

probs = get_treatment_probability(version, grid)
get_plot_probability(version, grid, probs)
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[5]: for version in ["sharp", "fuzzy"]:
plot_outcomes(version, grid)
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Alternatives
Consider the standard assumptions for matching:

• ignorability - trivially satisfied by research design as there is no variation left in 𝐷 conditional on 𝑋

• common support - cannot be satisfied and replaced by continuity

Lee and Lemieux (2010) emphasize the close connection of RDD to randomized experiments. - How does the graph
in the potential outcome framework change?
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Continuity, the key assumption of RDD, is a consequence of the research design (e.g. randomization) and not simply
imposed.

Identification

Ad-hoc × vs. thoughtful answers X. Both are true, but only thoughtful consideration clarifies the strength of the
regression discontinuity design as opposed to, for example, an instrumental variables approach.

Question
How do I know whether an RD design is appropriate for my context? When are the identification assumptions plausable
or implausable?

Answers
× An RD design will be appropriate if it is plausible that all other unobservable factors are “continuously” related to
the assignment variable.

X When there is a continuously distributed stochastic error component to the assignment variable - which can occur
when optimizing agents do not have precise control over the assignment variable - then the variation in the treatment
will be as good as randomized in a neighborhood around the discontinuity threshold.

Question
Is there any way I can test those assumptions?

Answers
× No, the continuity assumption is necessary so there are no tests for the validity of the design.

X Yes. As in randomized experiment, the distribution of observed baseline covariates should not change discontinu-
ously around the threshold.
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Simplified setup

𝑌 = 𝐷𝜏 + 𝑊𝛿1 + 𝑈

𝐷 = 𝐼[𝑋 ≥ 𝑐]

𝑋 = 𝑊𝛿2 + 𝑉

• 𝑊 is the vector of all predetermined and observable characteristics.

What are the source of heterogeneity in the outcome and assignment variable?

The setup for an RD design is more flexible than other estimation strategies. - We allow for 𝑊 to be endogenously
determined as long as it is determined prior to 𝑉 . This ensures some random variation around the threshold. - We take
no stance as to whether some elements 𝛿1 and 𝛿2 are zero (exclusion restrictions) - We make no assumptions about the
correlations between 𝑊 , 𝑈 , and 𝑉 .

Local randomization
We say individuals have imprecise control over 𝑋 when conditional on 𝑊 = 𝑤 and 𝑈 = 𝑢 the density of 𝑉 (and hence
𝑋) is continuous.

Applying Baye’s rule

Pr[𝑊 = 𝑤,𝑈 = 𝑢 | 𝑋 = 𝑥]

= 𝑓(𝑥 |𝑊 = 𝑤,𝑈 = 𝑢)
Pr[𝑊 = 𝑤,𝑈 = 𝑢]

𝑓(𝑥)

Local randomization: If individuals have imprecise control over 𝑋 as defined above, then Pr[𝑊 = 𝑤,𝑈 = 𝑢 | 𝑋 =
𝑥] is continuous in 𝑥: the treatment is “as good as” randomly assigned around the cutoff.

⇒ the behavioral assumption of imprecise control of 𝑋 around the threshold has the prediction that treatment is locally
randmized.

Consequences
• testing prediction that Pr[𝑊 = 𝑤,𝑈 = 𝑢 | 𝑋 = 𝑥] is continuous in𝑋 by at least looking at Pr[𝑊 = 𝑤 | 𝑋 = 𝑥]

• irrelevance of including baseline covariates
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Interpretation

Questions
To what extent are results from RD designs generalizable?

Answers
× The RD estimate of the treatment effect is only applicable to the subpopulation of individuals at the discontinuity
threshold and uninformative about the effect everywhere else.

X The RD estimand can be interpreted as a weighted average treatment effect, where the weights are relative ex ante
probability that the value of an individual’s assignment variable will be in the neighborhood of the threshold.

Alternative evaluation strategies

• randomized experiment

• regression discontinuity design

• matching on observables

• instrumental variables

How do the (assumed) relationships between treatment, observables, and unobservable differ across research designs?

Endogenous dummy variable

𝑌 = 𝐷𝜏 + 𝑊𝛿1 + 𝑈

𝐷 = 𝐼[𝑋 ≥ 𝑐]

𝑋 = 𝑊𝛿2 + 𝑉

• By construction 𝑋 is not related to any other observable or unoservable characteristic.

• 𝑊 and 𝐷 might be systematically related to 𝑋
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• The crucial assumptions is that the two lines in the left graph are actually superimposed of each other.

• The plot in the middle is missing as all variables are used for estimation are not available to test the validity of
identifying assumptions.

• The instrument must affect treatment probablity.

• A proper instructment requires the line in the right graph to be flat.

Nonlinear expectation

A nonlinear conditional expectation can easily lead to misleading result if the estimated model is based on an local linear
regression. The example below, including the simulation code, is adopted from Cunningham (2021). This example is
set up closely aligned with the potential outcome framework.

[6]: df = pd.DataFrame(columns=["Y", "Y1", "Y0", "X", "X2"], dtype=float)

# We simulate a running variable, truncate it at
# zero and restrict it below 240.
df["X"] = np.random.normal(100, 50, 1000)
df.loc[df["X"] < 0, "X"] = 0
df = df[df["X"] < 280]

df["X2"] = df["X"] ** 2

df["D"] = 0
df.loc[df["X"] > 140, "D"] = 1

We now simulate the potential outcomes and record the observed outcome. Note that there is no effect of treatment.

[7]: def get_outcomes(x, d):

level = 10000 - 100 * x + x ** 2
eps = np.random.normal(0, 1000, 2)

(continues on next page)
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(continued from previous page)

y1, y0 = level + eps
y = d * y1 + (1 - d) * y0

return y, y1, y0

for idx, row in df.iterrows():
df.loc[idx, ["Y", "Y1", "Y0"]] = get_outcomes(row["X"], row["D"])

df = df.astype(float)

What about the difference in average outcomes by treatment status. Where does the difference come from?

[8]: df.groupby("D")["Y"].mean()

[8]: D
0.0 9836.848389
1.0 21643.244614
Name: Y, dtype: float64

Now we are ready for a proper RDD setup.

[9]: for ext_ in ["X", "X + X2 "]:
rslt = smf.ols(formula=f"Y ~ D + {ext_}", data=df).fit()
print(rslt.summary())

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.783
Model: OLS Adj. R-squared: 0.782
Method: Least Squares F-statistic: 1795.
Date: Wed, 07 Jul 2021 Prob (F-statistic): 0.00
Time: 08:59:13 Log-Likelihood: -9407.4
No. Observations: 1000 AIC: 1.882e+04
Df Residuals: 997 BIC: 1.884e+04
Df Model: 2
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 4377.3226 241.423 18.131 0.000 3903.568 4851.077
D 5889.2320 319.611 18.426 0.000 5262.044 6516.420
X 68.1328 2.699 25.247 0.000 62.837 73.429
==============================================================================
Omnibus: 799.728 Durbin-Watson: 2.046
Prob(Omnibus): 0.000 Jarque-Bera (JB): 27622.480
Skew: 3.372 Prob(JB): 0.00
Kurtosis: 27.849 Cond. No. 430.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.

(continues on next page)
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(continued from previous page)

OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.973
Model: OLS Adj. R-squared: 0.973
Method: Least Squares F-statistic: 1.215e+04
Date: Wed, 07 Jul 2021 Prob (F-statistic): 0.00
Time: 08:59:13 Log-Likelihood: -8357.0
No. Observations: 1000 AIC: 1.672e+04
Df Residuals: 996 BIC: 1.674e+04
Df Model: 3
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 1.005e+04 107.870 93.125 0.000 9833.768 1.03e+04
D 2.2077 131.768 0.017 0.987 -256.368 260.783
X -99.9678 2.202 -45.405 0.000 -104.288 -95.647
X2 0.9959 0.012 84.522 0.000 0.973 1.019
==============================================================================
Omnibus: 0.261 Durbin-Watson: 2.002
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.164
Skew: -0.004 Prob(JB): 0.921
Kurtosis: 3.062 Cond. No. 6.81e+04
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
[2] The condition number is large, 6.81e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

In a nutsheel, the misspecification of the model for the conditional mean functions results in flawed inference.

Estimation

Lee (2008)

The author studies the “incumbency advantage”, i.e. the overall causal impact of being the current incumbent party in
a district on the votes obtained in the district’s election.

• Lee, David S. (2008). Randomized experiments from non-random selection in U.S. House elections. Journal of
Econometrics.

[13]: df_base = pd.read_csv("../../datasets/processed/msc/house.csv")
df_base.head()

[13]: vote_last vote_next
0 0.1049 0.5810
1 0.1393 0.4611
2 -0.0736 0.5434
3 0.0868 0.5846
4 0.3994 0.5803
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Let’s put in some effort to ease the flow of our coming analysis.

[9]: df_base.rename(columns={"vote_last": "last", "vote_next": "next"}, inplace=True)

df_base["incumbent_last"] = np.where(df_base["last"] > 0.0, "democratic", "republican")
df_base["incumbent_next"] = np.where(df_base["next"] > 0.5, "democratic", "republican")

df_base["D"] = df_base["last"] > 0

for level in range(2, 5):
label = "last_{:}".format(level)
df_base.loc[:, label] = df_base["last"] ** level

The column vote_last refers to the Democrat’s winning margin and is thus bounded between−1 and 1. So a positive
number indicates a Democrat as the incumbent.

What are the basic characteristics of the dataset?

[10]: df_base.plot.scatter(x="last", y="next")

[10]: <AxesSubplot:xlabel='last', ylabel='next'>

What is going on at the boundary? What is the re-election rate?

[11]: info = pd.crosstab(df_base["incumbent_last"], df_base["incumbent_next"], normalize=True)
stat = info.to_numpy().diagonal().sum() * 100
print(f"Re-election rate: {stat:5.2f}%")

Re-election rate: 90.93%
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Regression discontinuity design

How does the average vote in the next election look like as we move along last year’s election.

[12]: df_base["bin"] = pd.cut(df_base["last"], 200, labels=False) / 100 - 1
df_base.groupby("bin")["next"].mean().plot(xlabel="last", ylabel="next")

[12]: <AxesSubplot:xlabel='last', ylabel='next'>

We can now compute the difference at the cutoffs to get an estimate for the treatment effect.

[13]: h = 0.05
df_subset = df_base[df_base["last"].between(-h, h)]
stat = np.abs(df_subset.groupby("incumbent_last")["next"].mean().diff()[1])
print(f"Treatment Effect: {stat:5.3f}")

Treatment Effect: 0.096

How does the effect depend on the size subset under consideration?

Regression approach

Now we turn to an explicit model of the conditional mean. We first set up explicit models on both sides of the cutoff
and then aggreagte the model into single regression estimations.

[14]: def fit_regression(incumbent, df, level=4):

df_incumbent = df[df["incumbent_last"] == incumbent].copy()

formula = "next ~ last"
for level in range(2, level + 1):

label = "last_{:}".format(level)
formula += f" + {label}"

rslt = smf.ols(formula=formula, data=df_incumbent).fit()
return rslt

(continues on next page)
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(continued from previous page)

rslt = dict()
for incumbent in ["republican", "democratic"]:

rslt = fit_regression(incumbent, df_base, level=3)
title = "\n\n {:}\n".format(incumbent.capitalize())
print(title, rslt.summary())

Republican
OLS Regression Results

==============================================================================
Dep. Variable: next R-squared: 0.271
Model: OLS Adj. R-squared: 0.270
Method: Least Squares F-statistic: 339.2
Date: Wed, 30 Jun 2021 Prob (F-statistic): 3.05e-187
Time: 12:05:34 Log-Likelihood: 1749.4
No. Observations: 2740 AIC: -3491.
Df Residuals: 2736 BIC: -3467.
Df Model: 3
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.4278 0.007 57.880 0.000 0.413 0.442
last -0.0971 0.077 -1.264 0.206 -0.248 0.054
last_2 -1.7177 0.205 -8.359 0.000 -2.121 -1.315
last_3 -1.4636 0.142 -10.338 0.000 -1.741 -1.186
==============================================================================
Omnibus: 203.681 Durbin-Watson: 1.866
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1087.416
Skew: -0.022 Prob(JB): 7.42e-237
Kurtosis: 6.086 Cond. No. 113.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.

Democratic
OLS Regression Results

==============================================================================
Dep. Variable: next R-squared: 0.379
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 776.5
Date: Wed, 30 Jun 2021 Prob (F-statistic): 0.00
Time: 12:05:34 Log-Likelihood: 2055.2
No. Observations: 3818 AIC: -4102.
Df Residuals: 3814 BIC: -4077.
Df Model: 3

(continues on next page)
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(continued from previous page)

Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.5393 0.007 71.995 0.000 0.525 0.554
last 0.3553 0.071 4.998 0.000 0.216 0.495
last_2 0.1932 0.174 1.107 0.268 -0.149 0.535
last_3 -0.2111 0.114 -1.856 0.064 -0.434 0.012
==============================================================================
Omnibus: 439.976 Durbin-Watson: 2.136
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1993.314
Skew: -0.477 Prob(JB): 0.00
Kurtosis: 6.409 Cond. No. 114.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.

How does the predictions look like?

[15]: dfs = list()

for incumbent in ["republican", "democratic"]:
rslt = fit_regression(incumbent, df_base, level=4)

# For our predictions, we need to set up a grid for the evaluation.
if incumbent == "republican":

grid = np.linspace(-0.5, 0.0, 51)
else:

grid = np.linspace(+0.0, 0.5, 51)

df_grid = pd.DataFrame(grid, columns=["last"])

for level in range(2, 5):
label = "last_{:}".format(level)
df_grid.loc[:, label] = df_grid["last"] ** level

tmp = pd.DataFrame(rslt.predict(df_grid), columns=["prediction"])
tmp.index = df_grid["last"]
dfs.append(tmp)

rslts = pd.concat(dfs)

Let’s have a look at the estimated conditional mean fuctions.

[16]: rslts.plot()

[16]: <AxesSubplot:xlabel='last'>
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Regression

There are several alternatives to estimate the conditional mean functions.

• pooled regressions

• local linear regressions

Pooled regression

We estimate the conditinal mean using the whole function.

𝑌 = 𝛼 + 𝜏𝐷 + 𝛽𝑋 + 𝜖

This allows for a difference in levels but not slope.

[17]: smf.ols(formula="next ~ last + D", data=df_base).fit().summary()

[17]: <class 'statsmodels.iolib.summary.Summary'>
"""

OLS Regression Results
==============================================================================
Dep. Variable: next R-squared: 0.670
Model: OLS Adj. R-squared: 0.670
Method: Least Squares F-statistic: 6658.
Date: Wed, 30 Jun 2021 Prob (F-statistic): 0.00
Time: 12:05:34 Log-Likelihood: 3661.9
No. Observations: 6558 AIC: -7318.
Df Residuals: 6555 BIC: -7298.
Df Model: 2
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 0.4427 0.003 139.745 0.000 0.437 0.449

(continues on next page)
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D[T.True] 0.1137 0.006 20.572 0.000 0.103 0.125
last 0.3305 0.006 55.186 0.000 0.319 0.342
==============================================================================
Omnibus: 595.910 Durbin-Watson: 2.143
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3444.243
Skew: -0.225 Prob(JB): 0.00
Kurtosis: 6.522 Cond. No. 5.69
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣
→˓specified.
"""

Local linear regression

We now turn to local regressions by restricting the estimation to observations close to the cutoff.

𝑌 = 𝛼 + 𝜏𝐷 + 𝛽𝑋 + 𝛾𝑋𝐷 + 𝜖,

where −ℎ ≥ 𝑋 ≥ ℎ. This allows for a difference in levels and slope.

[18]: for h in [0.3, 0.2, 0.1, 0.05, 0.01]:
# We restrict the sample to observations close
# to the cutoff.
df = df_base[df_base["last"].between(-h, h)]

formula = "next ~ D + last + D * last"
rslt = smf.ols(formula=formula, data=df).fit()
info = [h, rslt.params[1] * 100, rslt.pvalues[1]]
print(" Bandwidth: {:>4} Effect {:5.3f}% pvalue {:5.3f}".format(*info))

Bandwidth: 0.3 Effect 8.318% pvalue 0.000
Bandwidth: 0.2 Effect 7.818% pvalue 0.000
Bandwidth: 0.1 Effect 6.058% pvalue 0.000
Bandwidth: 0.05 Effect 4.870% pvalue 0.010
Bandwidth: 0.01 Effect 9.585% pvalue 0.001

There exists some work that can guide the choice of the bandwidth. Now, let’s summarize the key issues and some
review best practices.

Checklist

Recommendations: - To assess the possibility of manipulations of the assignment variable, show its distribution. -
Present the main RD graph using binned local averages. - Graph a benchmark polynomial specification - Explore the
sensitivity of the results to a range of bandwidth, and a range of orders to the polynomial. - Conduct a parallel RD
analysis on the baseline covariates. - Explore the sensitivity of the results to the inclusion of baseline covariates.
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1.12 Difference in difference

A lecture on difference-in-difference method will be part of the next iteration of the OSE data science course, summer
semester 2022. Details on this lecture will be realized soon.

1.12.1 Difference in Difference
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1.13 Synthetic Control

A lecture on synthetic control method will be part of the next iteration of the OSE data science course, summer semester
2022. Details on this lecture will be realized soon.
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1.13.1 Synthetic Control

The model extends the traditional linear panel data (difference-in-differences) framework, allowing that
the effects of unobserved variables on the outcome vary with time. (Abadie & Diamond & Hainmueller
(2010))

-> This is the key differnce to the difference-in-difference design. However, it is important to clarify that this statement
refers to !time-constant! unobserved confounders. Now, the intuition that reproducing well a long time-series of pre-
treatment outcomes of the eventually treated unit with a weighted average of the donor pool also picks up the effect
of unobserved confounders. Then, because these are time-constant, their time-varying effect after treatment is also
incporporated.

Consider the following factor model:

𝑌 𝑁
𝑖𝑡 = 𝛿𝑡 + 𝜃𝑡𝑍𝑖 + 𝜆𝑡𝜇𝑖 + 𝜖𝑖𝑡

If 𝜆𝑡 = 𝜆, i.e. 𝜆𝑡 is constant over time, then we are back in the standard setting.
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CHAPTER

TWO

PROBLEM SETS

We provide a set of problem sets to revisit selected issues we discussed during class.

2.1 Potential outcome model

We explore the potential outcome model using observed and simulated data inspired by the National Health Interview
Survey. The accompanying data sets are available here.

2.1.1 Potential outcome model

[15]: import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

pd.options.display.float_format = "{:,.2f}".format

The National Health Interview Survey (NHIS) collects data on U.S. households since 1957. It covers a broad range of
health-related topics, from medical conditions, health insurance, and the number of doctor visits to measures of physical
activity. Here we focus on indicators relevant to the Potential outcome model (POM) framework. In particular, we will
compare the health status of hospitalized and non-hospitalized individuals in 2018. For this purpose, we use answers
to the survey question During the past 12 months, has the respondent been hospitalized overnight? with potential
answers Yes and No, which we code as one and zero. Further, we consider answers to the questions Would you say
your health, in general, is excellent, very good, good, fair, poor? where responses are coded as one for poor health
up to five for excellent health. The survey also collects data on relevant characteristics as sex, age, level of education,
hours worked last week, and total earnings.

Import the data set nhis-initial.xslx (raw file available in our course repository). Try to think of ways to answer the
following questions: Are there more females or males? Are there more individuals who hold a degree or not?. Now
try to relate individual characteristics to the hospitalization status. Are high or low earners/old or young people more
often hospitalized?

[16]: df = pd.read_excel("data/nhis-initial.xls", index_col=0)
df.index.set_names("Individual", inplace=True)
df.head()

[16]: sex age education hours earnings hospitalized health
Individual
0 male 49 bachelor 32 low 0 3
1 male 37 PhD 40 high 0 3
2 female 36 bachelor 40 high 0 4

(continues on next page)

135

https://www.cdc.gov/nchs/nhis/index.htm
https://www.cdc.gov/nchs/nhis/index.htm
https://github.com/HumanCapitalAnalysis/ose-data-science/tree/master/problem-sets/potential-outcome-model/data
https://www.cdc.gov/nchs/nhis/index.htm
https://github.com/OpenSourceEconomics/ose-course-data-science/blob/master/problem-sets/potential-outcome-model/data/nhis-initial.xls


OSE data science

(continued from previous page)

3 male 29 bachelor 25 middle 0 4
4 female 34 bachelor 40 middle 0 5

We will have to do so repeatedly, so let’s streamline this process and set up a proper function.

[17]: def get_dataset(fname="initial"):
df = pd.read_excel(f"data/nhis-{fname}.xls", index_col=0)
df.index.set_names("Individual", inplace=True)
return df

Let us get a basic feel for the data in front of us.

[18]: for column in df.columns:
print("\n", column.capitalize())
print(df.groupby("hospitalized")[column].describe())

Sex
count unique top freq

hospitalized
0 25320 2 male 13450
1 1496 2 female 938

Age
count mean std min 25% 50% 75% max

hospitalized
0 25,320.00 43.45 13.87 13.00 32.00 43.00 54.00 85.00
1 1,496.00 45.95 15.17 18.00 33.00 45.00 58.25 85.00

Education
count unique top freq

hospitalized
0 25320 5 bachelor 14006
1 1496 5 bachelor 845

Hours
count mean std min 25% 50% 75% max

hospitalized
0 25,320.00 40.60 13.49 1.00 38.00 40.00 45.00 99.00
1 1,496.00 38.78 14.00 1.00 33.75 40.00 43.00 99.00

Earnings
count unique top freq

hospitalized
0 25320 3 low 12930
1 1496 3 low 852

Hospitalized
count mean std min 25% 50% 75% max

hospitalized
0 25,320.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1,496.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

(continues on next page)
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(continued from previous page)

Health
count mean std min 25% 50% 75% max

hospitalized
0 25,320.00 3.97 0.89 1.00 3.00 4.00 5.00 5.00
1 1,496.00 3.59 1.05 1.00 3.00 4.00 4.00 5.00

We want to study average age and working hours in more detail. What are their averages in our data?

[19]: stat = df["age"].mean()
print(f"Average age in the sample is {stat:.2f}")

Average age in the sample is 43.59

[20]: stat = df["hours"].mean()
print(f"Average of working hours per week in the sample is {stat:.0f}")

Average of working hours per week in the sample is 40

[21]: for column in ["sex", "education", "earnings", "health"]:

fig, ax = plt.subplots()

info = df[column].value_counts(normalize=True)
x, y = info.index, info.to_numpy()

ax.bar(x, y)

ax.set_xlabel(column.capitalize())

ax.set_ylim(None, 1)
ax.set_ylabel("Share")
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Now try to relate individual characteristics to the hospitalization status.
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[22]: df.groupby("hospitalized")[["age", "hours"]].mean()

[22]: age hours
hospitalized
0 43.45 40.60
1 45.95 38.78

Let’s practice some plotting and set up a grouped bar chart to explore differences in the observables by hospitalization
status. Some additional explanations are available as part of the matplotlib gallery here.

[49]: width = 0.35
for column in ["sex", "education", "earnings"]:

fig, ax = plt.subplots()

rslt = df.groupby("hospitalized")[column].value_counts(normalize=True).sort_index()
y_out, y_in = rslt[0].to_numpy(), rslt[1].to_numpy()
labels = rslt.index.get_level_values(1).unique().sort_values()

x = np.array(range(len(y_out)))

ax.bar(x - width / 2, y_out, width, label="Out")
ax.bar(x + width / 2, y_in, width, label="In")

ax.set_xticks(x)
ax.set_xticklabels(labels)

ax.legend()
ax.set_title(column.capitalize())
ax.set_ylabel("Share")
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Task A.2

Compute the average health status of hospitalized and non-hospitalized individuals. Who is healthier on average? What
could be a reason for this difference?

[10]: df.groupby("hospitalized")["health"].mean().to_frame()

[10]: health
hospitalized
0 3.97
1 3.59
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Task A.3

Adjust the data set for the POM framework, with health status as the outcome and hospitalization as the treatment
status.

[11]: df = get_dataset()

df.rename(columns={"health": "Y", "hospitalized": "D"}, inplace=True)

df["Y_1"] = np.where(df["D"] == 1, df["Y"], np.nan)
df["Y_0"] = np.where(df["D"] == 0, df["Y"], np.nan)

df.head()

[11]: sex age education hours earnings D Y Y_1 Y_0
Individual
0 male 49 bachelor 32 low 0 3 NaN 3.00
1 male 37 PhD 40 high 0 3 NaN 3.00
2 female 36 bachelor 40 high 0 4 NaN 4.00
3 male 29 bachelor 25 middle 0 4 NaN 4.00
4 female 34 bachelor 40 middle 0 5 NaN 5.00

Task A.4

Compute the naive estimate for the average treatment effect (ATE)

[12]: stat = df["Y_1"].mean() - df["Y_0"].mean()
print(f"Our naive estimate is {stat:.1f}")

Our naive estimate is -0.4

Task B.1

As we’ve seen in the lecture, in reality, we can only ever observe one counterfactual; however, when simulating data,
we can bypass this problem. The (simulated) data set nhis-simulated.xslx (raw file available in our course repository)
contains counterfactual outcomes, i.e., outcomes under control for individuals assigned to the treatment group and vice
versa. Derive and compute the average outcomes in the two observable and two unobservables states. Design them
similar to Table 2.3 in Morgan & Winship (2014).

[102]: df = get_dataset("simulated")

[103]: rslt = df.groupby("D")[["Y_1", "Y_0"]].mean()

rslt.columns = ["E[Y_1|D]", "E[Y_0|D]"]
rslt.index = ["Untreated", "Treated"]

rslt

[103]: E[Y_1|D] E[Y_0|D]
Untreated 4.87 3.97
Treated 3.59 3.90
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Task B.2

From here on we assume that 5% of the population take the treatment. Derive and explain Equation (2.10) from Morgan
& Winship (2014) for the naive estimator as a decomposition of true ATE, baseline bias, and differential treatment effect
bias.

This derivation is straightforward.

Task B.3

Compute the naive estimate and true value of the ATE for the simulated data. Is the naive estimator upwardly or
downwardly biased? Calculate the baseline bias and differential treatment effect bias. How could we interpret these
biases in our framework of health status of hospitalized and non-hospitalized respondents?

[104]: pi = 0.05

# naive estimate
naive = rslt.loc["Treated", "E[Y_1|D]"] - rslt.loc["Untreated", "E[Y_0|D]"]

# baseline bias
base = rslt.loc["Treated", "E[Y_0|D]"] - rslt.loc["Untreated", "E[Y_0|D]"]

# differential effect
diff = 0
diff += rslt.loc["Treated", "E[Y_1|D]"] - rslt.loc["Treated", "E[Y_0|D]"]
diff -= rslt.loc["Untreated", "E[Y_1|D]"] - rslt.loc["Untreated", "E[Y_0|D]"]
diff *= 1 - pi

# true average treatment effect
true = 0
true += pi * (rslt.loc["Treated", "E[Y_1|D]"] - rslt.loc["Treated", "E[Y_0|D]"])
true += (1 - pi) * (rslt.loc["Untreated", "E[Y_1|D]"] - rslt.loc["Untreated", "E[Y_0|D]
→˓"])
print(f"naive: {naive:.2f}, base: {base:.2f}, diff: {diff:.2f}, true: {true:.2f}")

# We can also test the relationships just to be sure.
np.testing.assert_almost_equal(true, naive - (base + diff), decimal=10)

naive: -0.38, base: -0.07, diff: -1.14, true: 0.84

Task B.4

Under which assumptions does the naive estimator provide the ATE?

We need the stable unit treatment value assumption and independence between potential outcomes and the treatment.
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2.2 Matching estimators

We compare the consistency of regression and matching estimators using LaLonde (1986) framework and the Current
Population Survey data. The accompanying data sets are available here.

[37]: from sklearn.neighbors import NearestNeighbors
import statsmodels.formula.api as smf
from scipy.stats import ttest_ind
import matplotlib.pyplot as plt
import pandas as pd

pd.options.display.float_format = "{:,.2f}".format

2.2.1 Regression and matching estimators in causal effects

In this problem set we are going to compare the consistency of regression and matching estimators of causal effects
based on Dehejia & Wahba (1999). For that we employ the experimental study from LaLonde (1986), which provides
an opportunity to estimate true treatment effects. We then use these results to evaluate the performance of (treatment
effect) estimators one can usuallly obtain in observational studies.

LaLonde (1986) implements the data from the National Supported Work program (NSW) – temporary employment
program designed to help disadvantaged workers lacking basic job skills move into the labor market by giving them
work experience and counseling in sheltered environment. Unlike other federally sponsored employment programs,
the NSW program assigned qualiffed applications randomly. Those assigned to the treatment group received all the
bene ts of the NSW program, while those assigned to the control group were left to fend for themselves.

To produce the observational study, we select the sample from the Current Population Survey (CPS) as the comparison
group and merge it with the treatment group. We do this to obtain a data set which resembles the data which is commonly
used in scientific practice. The two data sets are explained below:*

• nsw_dehejia.csv is field-experiment data from the NSW. It contains variables as education, age, ethnicity, marital
status, preintervention (1975) and postintervention (1978) earnings of the eligible male applicants. Dehejia &
Wahba (1999) also transform the LaLonde (1986) data set to have observations on preintervention 1974 earnings;
motivation is explained in their paper.

• cps.csv is a non-experimental sample from the CPS which selects all males under age 55 and contains the same
range of variables.
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Task A

Create the table with the sample means of characteristics by age, education, preintervention earnings, etc. for treated
and control groups of NSW sample (you can use the Table 1 from Dehejia and Wahba (1999) as a benchmark). Is the
distribution of preintervention variables similar across the treatment and control groups? Check the differences on
significance. Add to the table the CPS sample means. Is the comparison group different from the treatment group in
terms of age, marital status, ethnicity, and preintervention earnings?

[87]: demographics = ["age", "ed", "black", "hisp", "married", "nodeg", "age2"]

dtypes = dict()
for column in ["treat"] + demographics:

dtypes[column] = int

df_nsw = pd.read_csv("data/nsw_dehejia.csv", dtype=dtypes)
df_nsw.index.name = "individual"
df_nsw.head()

[87]: treat age ed black hisp married nodeg re74 re75 re78 \
individual
0 1 37 11 1 0 1 1 0.00 0.00 9,930.05
1 1 22 9 0 1 0 1 0.00 0.00 3,595.89
2 1 30 12 1 0 0 0 0.00 0.00 24,909.45
3 1 27 11 1 0 0 1 0.00 0.00 7,506.15
4 1 33 8 1 0 0 1 0.00 0.00 289.79

age2
individual
0 1369
1 484
2 900
3 729
4 1089

How does a summary of the data look like?

[88]: df_nsw.describe()

[88]: treat age ed black hisp married nodeg re74 re75 \
count 445.00 445.00 445.00 445.00 445.00 445.00 445.00 445.00 445.00
mean 0.42 25.37 10.20 0.83 0.09 0.17 0.78 2,102.27 1,377.14
std 0.49 7.10 1.79 0.37 0.28 0.37 0.41 5,363.58 3,150.96
min 0.00 17.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 20.00 9.00 1.00 0.00 0.00 1.00 0.00 0.00
50% 0.00 24.00 10.00 1.00 0.00 0.00 1.00 0.00 0.00
75% 1.00 28.00 11.00 1.00 0.00 0.00 1.00 824.39 1,220.84
max 1.00 55.00 16.00 1.00 1.00 1.00 1.00 39,570.68 25,142.24

re78 age2
count 445.00 445.00
mean 5,300.76 693.98
std 6,631.49 429.78
min 0.00 289.00
25% 0.00 400.00
50% 3,701.81 576.00

(continues on next page)
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75% 8,124.72 784.00
max 60,307.93 3,025.00

Let’s look at the mean differences by treatment status.

[68]: df_nsw.groupby("treat").mean()

[68]: age ed black hisp married nodeg re74 re75 re78 \
treat
0 25.05 10.09 0.83 0.11 0.15 0.83 2,107.03 1,266.91 4,554.80
1 25.82 10.35 0.84 0.06 0.19 0.71 2,095.57 1,532.06 6,349.14

age2
treat
0 677.32
1 717.39

[69]: df_nsw.groupby("treat").mean().diff()

[69]: age ed black hisp married nodeg re74 re75 re78 age2
treat
0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 0.76 0.26 0.02 -0.05 0.04 -0.13 -11.45 265.15 1,794.34 40.08

Are these differences statistically significant?

[89]: for column in demographics:

treated = df_nsw.query("treat == 1")[column]
control = df_nsw.query("treat == 0")[column]

stat = ttest_ind(treated, control)[1]

print(f"{column:<7} {stat:7.3f}")

age 0.265
ed 0.135
black 0.649
hisp 0.076
married 0.327
nodeg 0.001
age2 0.333

[90]: df_cps = pd.read_csv("data/cps.csv", dtype=dtypes)
df_cps.index.name = "individual"
df_cps.head()

[90]: treat age ed black hisp married nodeg re74 re75 \
individual
0 0 45 11 0 0 1 1 21,516.67 25,243.55
1 0 21 14 0 0 0 0 3,175.97 5,852.56
2 0 38 12 0 0 1 0 23,039.02 25,130.76
3 0 48 6 0 0 1 1 24,994.37 25,243.55
4 0 18 8 0 0 1 1 1,669.30 10,727.61

(continues on next page)
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re78 age2
individual
0 25,564.67 2025
1 13,496.08 441
2 25,564.67 1444
3 25,564.67 2304
4 9,860.87 324

How does a summary of the data look like?

[91]: df_cps.describe()

[91]: treat age ed black hisp married nodeg \
count 15,992.00 15,992.00 15,992.00 15,992.00 15,992.00 15,992.00 15,992.00
mean 0.00 33.23 12.03 0.07 0.07 0.71 0.30
std 0.00 11.05 2.87 0.26 0.26 0.45 0.46
min 0.00 16.00 0.00 0.00 0.00 0.00 0.00
25% 0.00 24.00 11.00 0.00 0.00 0.00 0.00
50% 0.00 31.00 12.00 0.00 0.00 1.00 0.00
75% 0.00 42.00 13.00 0.00 0.00 1.00 1.00
max 0.00 55.00 18.00 1.00 1.00 1.00 1.00

re74 re75 re78 age2
count 15,992.00 15,992.00 15,992.00 15,992.00
mean 14,016.80 13,650.80 14,846.66 1,225.91
std 9,569.80 9,270.40 9,647.39 784.74
min 0.00 0.00 0.00 256.00
25% 4,403.45 4,398.82 5,669.30 576.00
50% 15,123.58 14,557.11 16,421.97 961.00
75% 23,584.18 22,923.74 25,564.67 1,764.00
max 25,862.32 25,243.55 25,564.67 3,025.00

Let’s compare mean differences between the synthetic control group and the treatment group.

[92]: for column in demographics:

treated = df_nsw.query("treat == 1")[column]
control = df_cps[column]

stat = ttest_ind(treated, control)[1]

print(f"{column:<7} {stat:7.3f}")

age 0.000
ed 0.000
black 0.000
hisp 0.510
married 0.000
nodeg 0.000
age2 0.000
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Task B. Regression Adjustment

In this section we compare the results of regression estimates with selection on observables as discussed in the lecture
6.

Task B.1

Merge the treatment group data from the NSW sample with the comparison group data from the CPS sample to imitate
an observational study.

[93]: df_nsw["sample"] = "NSW"
df_cps["sample"] = "CPS"

df_obs = pd.concat([df_nsw.query("treat == 1"), df_cps])
df_obs.set_index(["sample"], append=True, inplace=True)
df_obs.sort_index(inplace=True)

df_obs.loc[(slice(1, 5), "NSW"), :]

[93]: treat age ed black hisp married nodeg re74 re75 \
individual sample
1 NSW 1 22 9 0 1 0 1 0.00 0.00
2 NSW 1 30 12 1 0 0 0 0.00 0.00
3 NSW 1 27 11 1 0 0 1 0.00 0.00
4 NSW 1 33 8 1 0 0 1 0.00 0.00
5 NSW 1 22 9 1 0 0 1 0.00 0.00

re78 age2
individual sample
1 NSW 3,595.89 484
2 NSW 24,909.45 900
3 NSW 7,506.15 729
4 NSW 289.79 1089
5 NSW 4,056.49 484

Task B.2

Which assumption need to hold such that conditioning on observables can help in obtaining an unbiased estimate of
the true treatment effect?

𝐸[𝑌 1|𝐷 = 1, 𝑆] = 𝐸[𝑌 1|𝐷 = 0, 𝑆]

𝐸[𝑌 0|𝐷 = 1, 𝑆] = 𝐸[𝑌 0|𝐷 = 0, 𝑆]
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Task B.3

Run a regression on both experimental and non-experimental data using the specification: RE78 on a constant, a
treatment indicator, age, age2, education, marital status, no degree, black, hispanic, RE74, and RE75. We recommend
using statsmodels, but you are free to use any other software. Is the treatment effect estimate of the observational study
consistent with the true estimate?

We first construct the regression equation.

[94]: indep_vars = df_obs.columns.tolist()
indep_vars.remove("re78")

formula = "re78 ~ " + " " " + ".join(indep_vars)
formula

[94]: 're78 ~ treat + age + ed + black + hisp + married + nodeg + re74 + re75 + age2'

Now we can run the model on both datasets.

[95]: for label, data in [("observational", df_obs), ("experimental", df_nsw)]:
stat = smf.ols(formula=formula, data=data).fit().params["treat"]
print(f"Estimate based on {label} data: {stat:7.3f}")

Estimate based on observational data: 793.587
Estimate based on experimental data: 1675.862

Task C. Matching on Propensity Score

Recall that the propensity score p(Si) is the probability of unit i having been assigned to treatment. Most commonly
this function is modeled to be dependent on various covariates. We write 𝑝(𝑆𝑖) := 𝑃𝑟(𝐷𝑖 = 1|𝑆𝑖) = 𝐸(𝐷𝑖|𝑆𝑖). One
assumption that makes estimation strategies feasible is 𝑆𝑖 ⊥ 𝐷𝑖|𝑝(𝑆𝑖) which means that, conditional on the propensity
score, the covariates are independent of assignment to treatment. Therefore, conditioning on the propensity score, each
individual has the same probability of assignment to treatment, as in a randomized experiment.*

Estimation is done in two steps. First, we estimate the propensity score using a logistic regression model. Secondly, we
match the observations on propensity score employing nearest-neighbor algorithm discussed in the lecture 5. That is,
each treatment unit is matched to the comparison unit with the closest propensity score – the unmatched comparison
units are discarded.

Task C.1

Before we start with matching on propensity score, let’s come back to another matching strategy which was discussed in
Lecture 5 - matching on stratification. Looking at the data could you name at least two potential reasons why matching
on stratification might be impossible to use here?

Data contains continuous variables; formed stratas might not have treated and control units available at the same time.
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Task C.2

Employing our imitated observational data run a logistic regression on the following specification: treatment indica-
tor on age, education, marital status, no degree, black, hispanic, RE74, and RE75. Use, for example, `statsmodels
<https://www.statsmodels.org/stable/index.html>`__ for this task. Then extract a propensity score for every individual
as a probability to be assigned into treatment.

[96]: formula = "treat ~ age + ed + black + hisp + married + nodeg + re74 + re75"
df_obs["pscore"] = smf.logit(formula=formula, data=df_obs).fit().predict()

Optimization terminated successfully.
Current function value: 0.031035
Iterations 12

Task C.3

Before proceeding further we have to be sure that propensity scores of treatment units overlap with the propensity
scores of control units. Draw a figure showing the distribution of propensity score across treatment and control units
(we use the packages matplotlib and seaborn). Do we observe common support?

[97]: fig, ax = plt.subplots()

df_control = df_obs.query("treat == 0")["pscore"]
df_treated = df_obs.query("treat == 1")["pscore"]

ax.hist([df_control, df_treated], density=True, label=["Control", "Treated"])

ax.set_ylim(0, 5)
ax.set_xlim(0, 1)
ax.set_ylabel("Density")
ax.set_xlabel("Propensity scores")
ax.legend()

[97]: <matplotlib.legend.Legend at 0x7fa33de94590>
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Task C.4

Match each treatment unit with control unit one-to-one with replacement. We use the package sklearn.neighbors: apply
the algorithm NearestNeighbors to the propensity score of treated and control units and extract the indices of matched
control units.

[98]: def get_matched_dataset(df):
training_data = df.query("treat == 0")["pscore"].to_numpy().reshape(-1, 1)
eval_point = df.query("treat == 1")["pscore"].to_numpy().reshape(-1, 1)

neigh = NearestNeighbors(n_neighbors=1)

neigh.fit(training_data)
matched = neigh.kneighbors(eval_point, return_distance=False)[:, 0]

df_treated = df.query("treat == 1")
df_matched = df.query("treat == 0").iloc[matched]

df_sample = pd.concat([df_treated, df_matched])

return df_sample

Task C.5

Construct new data set with matched observations. Run the regression to obtain matching on propensity score esti-
mate. Is it more or less consistent estimate of the true effect comparing to the regression estimate with selection on
observables? How could you explain this result?

[99]: df_sample = get_matched_dataset(df_obs)
stat = smf.ols(formula="re78 ~ treat", data=df_sample).fit().params["treat"]
print(f"Estimate based on matched for re78 data: {stat:7.3f}")

Estimate based on matched for re78 data: 1551.477

Regression model neglects important nonlinear terms and interactions (Rubin 1973). The benefit of matching over
regression is that it is non-parametric (but you do have to assume that you have the right propensity score specification
in case of matching).

Let’s further explore two selected issues in matching, i.e. the use of placebo testing and trimming.

[100]: stat = smf.ols(formula="re75 ~ treat", data=df_sample).fit().params["treat"]
print(f"Estimate based on matched for re75 data: {stat:7.3f}")

Estimate based on matched for re75 data: 221.917

What happens if we trim our dataset?

[84]: for value in [0.025, 0.05, 0.1, 0.15]:

lower, upper = value, 1 - value
df_trimmed = df_obs.loc[df_obs["pscore"].between(lower, upper), :]

df_sample = get_matched_dataset(df_trimmed)

(continues on next page)
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(continued from previous page)

stat = smf.ols(formula="re78 ~ treat", data=df_sample).fit().params["treat"]
print(f"{value:5.3f}: {stat:7.3f}")

0.025: 1563.983
0.050: 1665.306
0.100: 1744.330
0.150: 2138.977

References

• Bureau of Labor Statistics. (1974, 1975, 1978). Current Population Survey.

• Dehejia, R., and Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the evaluation of
training programs. Journal of the American Statistical Association, 94(448), 1053-1062.

• LaLonde, R. J. (1986). Evaluating the econometric evaluation of training programs with experimental data.
American Economic Review, 76(4), 604-620.

2.3 Regression discontinuity design

We practice RDD with Lee (2008) framework. In particular, we illustrate a discontinuity at the cutoff point with local
averages graph, estimate treatment effect by local linear regression and choose an optimal bandwidth by cross-validation
procedure. The accompanying data sets are available here.

[1]: from functools import partial

import statsmodels.formula.api as smf
import pandas as pd
import numpy as np

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import LeaveOneOut

from auxiliary import plot_bandwidth
from auxiliary import plot_logistic

2.3.1 Regression Discontinuity Design (RDD)

In the problem set we are going to practice RDD in the Lee (2008) framework. We employ the original simplified data
set on the individual candidates for the US House of Representatives from 1946 to 1998. If a candidate obtains more
votes than his or her competitors, he or she takes the office. Each elected candidate represents one of 435 congressional
districts. The elections are held every two years. We seek the answer to the question whether winning the election has
a causal influence on the probability that the candidate will win the next election.

The observations of the data set individ_final.dta are clustered by district and election year. It consists of the following
variables:*

• outcome is a treatment variable; it is coded as 1 if a candidate won the election in the corresponding year and 0
– otherwise.
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• outcomenext is an outcome variable. It is coded as 1 if a candidate won the next election; as 0 if he or she did
not win the next election; and as -1 if he or she did not participate in the next election.

• difshare is an assignment variable; it is the winning candidate’s vote share minus the vote share of the highest
performing competitor. Therefore, 0 is the cutoff point: a candidate whose vote share is more than 0 is automat-
ically assigned to treatment.

[2]: df = pd.read_stata("data/individ_final.dta")
df.index.set_names("Identifier", inplace=True)
df.head()

# Better handling of missing values
df.replace({"outcomenext": {-1: np.nan}}, inplace=True)

Task A

What is the main assumption that makes RDD possible? Define the local randomization condition in the simplified
setup presented in the lecture.

Main assumption: agents are unable to precisely control the assignment variable near the known cutoff what leads to
the randomized variation in treatment near the threshold.

The framework:

𝑌 = 𝐷𝜏 + 𝑊𝛿1 + 𝑈

𝐷 = 𝐼(𝑋 ≥ 𝑐)

𝑋 = 𝑊𝛿2 + 𝑉,

where: - Y is the outcome of interest, - D is the binary treatment indicator, - W is the vector of all predetermined and
observable characteristics of the individual that might impact Y and/or X, - X is the assignment variable, - c is the
cutoff value

Individuals have imprecise control over X when conditional on W = w and U = u, the density of V (and hence X) is
continuous.

Definition of Local Randomization: If individuals have imprecise control over X, then Pr[W = w,U = u|X = x] is
continuous in x: the treatment is “as good as” randomly assigned around the cutoff.

Task B

A major advantage of the RD design over competing methods is its transparency, which can be illustrated using graph-
ical methods. A standard way of graphing the data is to divide the assignment variable into a number of bins, making
sure there are two separate bins on each side of the cutoff point. Then, the average value of the outcome variable can
be computed for each bin and graphed against the mid-points of the bins.
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Task B.1

Create a new variable that groups the assignment variable values into 400 bins with a size of 0.005.

[3]: df["bin"] = pd.cut(df["difshare"], 400, labels=False) / 200 - 1
df.sort_values(by="bin", inplace=True)
df.head()

[3]: year outcome outcomenext difshare bin
Identifier
18052 1960 0 NaN -0.997953 -1.0
16649 1946 0 NaN -0.999208 -1.0
16651 1950 0 NaN -0.999915 -1.0
16653 1952 0 NaN -0.997832 -1.0
16655 1954 0 NaN -0.999943 -1.0

Task B.2

Since we are interested in a causal influence on the probability that the candidate will win the next election based on
winning the current election, drop the rows that do not have a comparable next election.

How many missing values do we have?

[4]: df["outcomenext"].isna().sum()

[4]: 16403

Now get rid of all those observations.

[5]: df.dropna(inplace=True)
np.testing.assert_equal(df["outcomenext"].isna().sum(), 0)

We can now build our remaining pipeline under the assumption that there are no missing values included. However, we
might introduce them later again by some accidental operatoin. That is where data validation packages such as pandera
come in handy. pandera allows to specify and check properties on your data easily .. and thus frequently.

Task B.3

Find the mean of the outcome variable for each bin or, in other words, local average. Draw this relationship on the
scatterplot.

[6]: df.groupby("bin").mean()["outcomenext"].sort_index().plot()

[6]: <AxesSubplot:xlabel='bin'>
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We will now repeatedly split the data at the cutoff.

[7]: df["status"] = None
df.loc[df["difshare"].between(-0.25, +0.00), "status"] = "below"
df.loc[df["difshare"].between(+0.00, +0.25), "status"] = "above"

Task B.4

For better visuality we also add to the graph the fitted values of logistic regression around the cutoff. For this apply
logistic regression separately on either side of the threshold (we take the bins with the share values from -0.25 to 0.25
and use the package LogisticRegression from sklearn.linear model). Extract probability estimates. Add them to the
scatterplot in the proximity of cutoff. Do you observe a discontinuity at the cutoff point?

[8]: probs = dict()

lr = LogisticRegression(C=1e20)
for label in ["below", "above"]:

df_subset = df.query(f"status == '{label}'")

y = df_subset["outcomenext"]
x = df_subset[["difshare"]]

lr.fit(x, y)
probs[label] = lr.predict_proba(x)

plot_logistic(df, probs)

154 Chapter 2. Problem sets



OSE data science

Task C

LLR as a method restricts the estimation to observations close to the cutoff. It is based on the assumption that regression
lines within the bins around the cutoff point are close to linear. That helps to avoid some of the drawbacks of other
parametric/non-parametrics approaches (Lee & Lemieux (2010))

*Run the LLR with a specification $Y = 𝛼_𝑟 + 𝜏 ‘𝐷+ : 𝑛𝑏𝑠𝑝ℎ𝑖𝑛𝑥 − 𝑚𝑎𝑡ℎ :
𝑏𝑒𝑡𝑎X + :nbsphinx-math:𝑔𝑎𝑚𝑚𝑎X D + :nbsphinx-math:𝑒𝑝𝑠𝑖𝑙𝑜𝑛$, where :math:`X𝑖𝑠𝑟𝑒𝑐𝑡𝑟𝑖𝑐𝑡𝑒𝑑𝑏𝑦𝑎𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ :
−ℎ < 𝑋 < ℎ. Interpret the result. Experiment with few bandwidths on your choice.*

[9]: for h in [0.25, 0.2, 0.1, 0.05, 0.01]:
df_subset = df[df["difshare"].between(-h, h)]
formula = "outcomenext ~ outcome + difshare + difshare*outcome"
rslt = smf.ols(formula=formula, data=df_subset).fit()
info = [h, rslt.params[1] * 100, rslt.pvalues[1]]
print(" Bandwidth: {:>4} Effect {:5.3f}% pvalue {:5.3f}".format(*info))

Bandwidth: 0.25 Effect 52.439% pvalue 0.000
Bandwidth: 0.2 Effect 49.521% pvalue 0.000
Bandwidth: 0.1 Effect 43.861% pvalue 0.000
Bandwidth: 0.05 Effect 38.910% pvalue 0.000
Bandwidth: 0.01 Effect 25.700% pvalue 0.069

Task D

As you might find, the treatment effect result is sensitive to the bandwidth choice. In general, choosing a bandwidth in
estimation involves finding an optimal balance between precision and bias. One the one hand, using a larger bandwidth
yields more precise estimates as more observations are available to estimate the regression. On the other hand, the
linear specification is less likely to be accurate (Lee & Lemieux (2010)).

We are going to review one of the approaches for choosing a bandwidth – cross-validation “leave one out” procedure.
The main idea is to take an observation i in the data, leave it out, run LLR, and use the estimates to predict the value of
𝑌 at 𝑋 = 𝑋𝑖. Proceeding with each observation separately on each side of the cutoff, we obtain the predicted values
of 𝑌 that can be compared to the actual values. The optimal bandwidth is then a value of ℎ that minimizes the mean
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square of the difference between the predicted and actual values of 𝑌 . And overall mean square error is simply the
average of the squares of the prediction errors on each side of the cutoff.

Draw the graph showing the relationship between the bandwidth and the mean square error. What is the optimal
bandwidth for LLR in our framework?*

[10]: num_points = 10
bandwidth = np.linspace(0.01, 0.50, num_points)

scoring = "neg_mean_squared_error"
model = LinearRegression()
cv = LeaveOneOut()

cross_val_score_p = partial(cross_val_score, scoring=scoring, cv=cv)

We are ready to now run the actual computations.

[11]: rslts = pd.DataFrame(columns=["below", "above", "joint"])
rslts.index.set_names("Bandwidth", inplace=True)

for label in ["below", "above"]:
for h in bandwidth:

if label == "below":
df_subset = df.loc[df["difshare"].between(-h, +0.00)]

else:
df_subset = df.loc[df["difshare"].between(+0.00, +h)]

y = df_subset[["outcomenext"]]
x = df_subset[["difshare"]]

rslts.loc[h, label] = -cross_val_score_p(model, x, y).mean()

rslts["joint"] = rslts[["below", "above"]].mean(axis=1)

It is time for a visual inspection.

[12]: plot_bandwidth(bandwidth, rslts["joint"])
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What is the optimal bandwith in this setting?

[13]: print(f" Optimal bandwidth: {rslts['joint'].idxmin():5.3f}")

Optimal bandwidth: 0.500

References

• Lee, D. S. (2008). Randomized experiments from non-random selection in US house elections. Journal of
Econometrics, 142(2), 675–697.

• Lee, D. S., & Lemieux, T. (2010). Regression discontinuity designs in economics. Journal of Economic Liter-
ature, 48, 281-355.
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THREE

HANDOUTS

We curate a list of handouts that summarize selected issues.

3.1 Causal Graphs

3.1.1 Definitions, patterns, and strategies

3.1.2 Definitions

• A node represents a random variable labeled by letter. Observed random variables are marked by solid circle •
and unobserved - by hollow circle ◦.

• An edge shows dependence between joining variables.

• Adjacent variables are connected by an edge.

• Adjacent edges meet at a variable.

• A directed edge represents the cause by a single-headed arrow.

• A parent/child is the starting(tail)/ending(head) variable. Therefore, a directed edge represents a direct effect
of a parent on a child.

• A root is a variable that has no parent. In other words, it is an exogenous variable determined only by forces
outside of the graph.

• A sink is a variable with no children.

• A path is a sequence of adjacent edges.

• A directed path is a path traced out entirely along arrows tail-to-head. If there is a directed path from 𝐴 to 𝐵,
𝐴 is an ancestor of 𝐵; 𝐵 is a descendant of 𝐴.

• A directed acyclic graph (DAG) is a graph with only arrows for edges and no feedback loops (i.e. no variable
is its own ancestor or its own descendant):
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• Joint dependence of two variables on one or more common causes is shown either with unobservable variable
or with bidirected dashed curved edge:
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3.1.3 Patterns

• Chain of mediation is a relationship when 𝐴 affects 𝐵 through 𝐴’s causal effect on 𝐶 and 𝐶’s causal effect on
𝐵:

• Mutual dependence is a relationship when 𝐴 and 𝐵 are both caused by 𝐶 (a variable 𝐶 that affects both the
dependent and independent variable is called a confounding variable):
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• Mutual causation is a relationship when 𝐴 and 𝐵 are both causes of 𝐶 (a variable 𝐶 that has two arrows running
into it is called a collider):

• A back-door path is a path between any causally ordered sequence of two variables that include a directed edge
that points to the first variable.

• Conditioning as a modeling strategy means transforming one graph into a simpler set of component graphs
where fewer causes are represented.
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3.1.4 Strategies

A back-door criterion is a set of conditions used to determine whether or not conditioning on a given set of observed
variable will identify the causal effect. The causal effect is identified by conditioning on a set of variables 𝑍 if and only
if all back-door paths between the causal variable and the outcome variable are blocked after conditioning on 𝑍. All
back-door paths are blocked by 𝑍 if and only if each back-door path: - contains a chain of mediation 𝐴ß𝐶ß𝐵 where
the middle variable 𝐶 is in 𝑍, or - contains a fork of mutual dependence 𝐴¸𝐶ß𝐵, where the middle variable 𝐶 is in
𝑍, or - contains an inverted fork of mutual causation 𝐴ß𝐶¸𝐵, where the middle variable 𝐶 and all of 𝐶’s decendents
are not in 𝑍.

A front-door criterion is an empirical strategy used to identify the causal relationship flowing from 𝐴 to 𝐵 if one can
find a mechanism C which: - lies on the causal path between 𝐴 and 𝐵, and - it is the only such mechanism, and - it is
not affected by the unobserved confounder 𝑈 :

You can find more on front-door criterion application in the Bellemare & Bloem (2020) paper.

3.1.5 References

• Bellemare, M., & Bloem, J. (2020). The paper of how: Estimating treatment effects using the front-door
criterion. Working Paper.

• Morgan, S. L., & Winship, C. (2014). Counterfactuals and causal inference. Cambridge, England: Cambridge
University Press.

• Pearl, J. (2009). Causality. Cambridge, England: Cambridge University Press.
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3.2 Back-door identification

If one or more back-door paths connect the causal variable to the outcome variable, the causal effect is identified by
conditioning on a set of variables 𝑍 if:

Condition 1 All back-door paths between the causal variable and the outcome variable are blocked after conditioning
on 𝑍, which will always be the case if each back-door path

• contains a chain of mediation 𝐴→ 𝐶 → 𝐵 where the middle variable 𝐶 is in 𝑍

• contains a fork of mutual dependence 𝐴← 𝐶 → 𝐵, where the middle variable 𝐶 is in 𝑍

• contains an inverted fork of mutual causation 𝐴 → 𝐶 ← 𝐵, where the middle variable 𝐶 and all of 𝐶’s
decendents are not in 𝑍

and:

Condition 2 No variables in 𝑍 are decendents of the causal variable that lies on (or decend from other variables that
lie on) any of the directed paths that begin at the causal variable and reach the outcome variable.

3.3 Front-door identification

If one or more unblocked bach-door paths connect a causal variable to an outcome variable, the causal effect is identified
by conditioning on a set of observed variables {𝑀}, that make up an identifying mechanism if

• Condition 1 (exhaustiveness) The variables in the set {𝑀} intercept all directed paths from the causal variable
to the outcome variable.

• Condition 2 (isolation) No unblocked back-door paths connect the causal variable to the variables in the set
{𝑀}, and all back-door paths from the variables in the set {𝑀} to the outcome variable can be blocked by
conditioning on the causal variable.
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PROJECTS

All information regarding your course project is collected in the OSE course projects documentation.
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FIVE

PARTNERS

Our course equips students with the required skills in statistics, technology, and communication to use data for decision-
making. Our partnerships with the private and public sector connect students directly with employment opportunities
that match their interests and skill set. All information regarding your partners is collected in the OSE course projects
documentation.
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CHAPTER

SIX

ORGANIZATION

We start on April 13th 2021 and meet on Tuesdays (14:15-15:45pm) and Wednesdays (10:15-11:45pm).

Lecturer Philipp Eisenhauer

Assistant Carolina Alvarez

We will conduct all course communications using the bonn-econ-teaching Zulip chat, so please be sure to join us there.
To join the Zulip organization, please click on the button below.

The student projects are due on the 23rd of July.

6.1 Lecture plan

Date Topic
13/04/2021 Kickoff, Introduction
14/04/2021 Tools for data science
20/04/2021 Counterfactuals and the potential outcome model
21/04/2021 Counterfactuals and the potential outcome model
27/04/2021 Problem set: Potential outcome model
28/04/2021 Causal graphs
04/05/2021 Causal graphs
05/05/2021 Identification criteria for conditioning estimators
11/05/2021 Matching estimators for causal effects
12/05/2021 Matching estimators for causal effects
18/05/2021 Matching estimators for causal effects
19/05/2021 Dies Academicus, office hours
25/05/2021 Pentecost holidays
26/05/2021 Pentecost holidays
01/06/2021 Problem set: Matching estimators
02/06/2021 Guest lecture: Alexander Sommer (Ernst & Young)
08/06/2021 Regression estimators for causal effects
09/06/2021 Self-selection, heterogeneity, and causal graphs
15/06/2021 Instrumental variable estimators of causal effects
16/06/2021 Instrumental variable estimators of causal effects
22/06/2021 Mechanisms and causal explanations
23/06/2021 Guest lecture: Dr. Nils Wittman (McKinsey & Company)
29/06/2021 Regression discontinuity design

continues on next page
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Table 1 – continued from previous page
Date Topic
30/06/2021 Regression discontinuity design
06/07/2021 Guest lecture: Dr. Sebastian Garmann (Bundesrechnungshof)
07/07/2021 Problem set: Regression discontinuity design
13/07/2021 Introduction to structural econometrics
14/07/2021 Guest Lecture: Susane Scholten and Martin Slowik (Deutsche Bank)
20/07/2021 Maximum Likelihood Estimation
21/07/2021 Simulated Methods Moments
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TEXTBOOKS

We use the book The effect: an introduction to research design and causality by Nick Huntington-Klein and Causal
inference: the mixtape by Scott Cunningham throughout the course.
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EIGHT

REVIEWS

• Athey, S., Imbens, G. (2017). The state of applied econometrics: causality and policy evaluation , Journal of
Economics Perspectives, 31(2), 3-32.

• Abadie, A., Cattaneo, M.D. (2018). Econometric methods for program evaluation , Annual Review of Eco-
nomics, 10, 465-503.
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POWERED BY

We gratefully acknowledge funding by the Federal Ministry of Education and Research (BMBF) and the Ministry of
Culture and Science of the State of North Rhine-Westphalia (MKW) as part of the Excellence Strategy of the federal
and state governments.
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